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Abstract— This research demonstrates that transmission line 

faults can be classified automatically according to their 

underlying cause, and lays a foundation for operational 

classification of transmission line faults in system control centres. 

The transmission line fault waveforms are characterised by 

instantaneous symmetrical component analysis to describe the 

transient and steady state fault conditions. Using a large fault 

record and waveform database, classification features based on 

the waveform and external environmental characteristics have 

been identified to develop single-nearest-neighbour classifiers 

that identify the underlying cause of transmission line faults, and 

good classification accuracy has been achieved. 

 
Index Terms— power system operations, transmission line 

faults, fault causes, nearest neighbor classifier, pattern 

recognition 

 

I. INTRODUCTION 

ODERN society depends on electricity supplies that are 

reliable [1] and compatible with the needs of equipment 

connected by utility customers [2].  Supply interruptions 

and voltage dips are the two most common events affecting 

customers and have the largest financial impact on them. They 

disrupt commercial activities and manufacturing processes, 

resulting in decreased output and profitability [3]. Faults on 

transmission lines are a root cause of both interruptions and 

voltage dips [2].  

The focus of this paper is on the classification of transmission 

line faults, according to the underlying cause, to meet the 

requirements for transmission systems control and operations.  

The classification of faults plays a role in both the design and 

operational management of networks. Incorrect classification 

leads to uncertainty and error in developing ways to improve 

network reliability performance. The benefits of correct fault 

cause identification are a) reduced wasteful expenditure on 

inappropriate corrective measures, b) lower fault frequencies 

as the causes of faults are addressed, and c) automatic fault 

identification for immediate operational responses to faults. 

Accurate identification of fault causes informs the design and 

parameter selection of new lines (insulator selection, tower 

design, footing resistance) and identifies poorly performing 

lines for implementing mitigating improvements. The design 

of new networks close to existing networks is often done on 

 

 
 

the basis that they will be exposed to similar conditions, and 

improvements can be made to reduce the effects of the 

prevalent causes of faults. For example, from the start of a 

project, bird guards might be adopted or clearances increased 

to minimize bird streamer faults.  

In a typical scenario, once a fault has occurred, an operational 

crew is dispatched to patrol the line, identify the fault and 

conduct corrective work. Automatic classification can provide 

information for dispatchers to help teams to be appropriately 

equipped and prepared to look for characteristic fault signs. 

Where lines are not allowed to be returned to service without a 

complete line inspection to resolve uncertainty about the cause 

of a fault and concerns about equipment damage, early 

identification of the fault cause could allow a line to be 

restored more quickly [4].  

The causes of faults are not always correctly identified as field 

services staff may give vague descriptions or lack knowledge 

about the fault mechanisms [5]. Thus, the aim of the present 

research is to establish an operational basis for classifying 

faults according to their underlying cause. The contributions 

of this work are: a) the development of waveform features to 

characterise faults across multiple voltage levels, at specific 

time intervals from fault initiation and according to the 

influence of the fault flashover mechanism; b) the ranking and 

selection of contextual and waveform features for identifying 

the causes of transmission line waveforms; c) the successful 

classification of transmission line faults by Single Nearest 

Neighbor classification, and d) showing that transmission line 

faults can be classified using either combined contextual and 

waveform features or only contextual features. 

II. LITERATURE REVIEW 

A. Waveform Characterization for Event Classification 

Characterizing event waveforms (e.g. voltage dips) is used to 

reduce data, interpret and characterize events for analysis and 

management of power quality [6]. Methods include the ABC 

classification [7] and the South African NRS048-2 voltage dip 

characterization [8]. The requirement is to describe events 

with a limited number of parameters [9].  

Characterization is also conducted for automatic classification 

of disturbances [10] with the aim being ‘to find common 

features that are likely related to specific underlying causes in 

power systems’ [11]. Various signal processing techniques, 

including root mean square (rms), Fourier and wavelet 

transforms [12], have been used to extract features and 

characterize events. They include finding the fundamental 

voltages and currents and harmonics, detecting transition 
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points in waveforms, waveform segmentation and feature 

extraction [13].  

Most studies base event classification on the disturbance type 

e.g. dips, transient and swells [13]. While this work is relevant 

for developing methods, its practical application is limited 

[10], since many studies with a shortage of data use synthetic 

data, leading to results with limited applicability to real-world 

scenarios [10].  

Characterizing events according to their underlying causes is 

of more practical benefit, as described above, but limited work 

has been published. Classification of faults according to 

causes internal to the power system (e.g. transformer 

energizing, load changes and motor starting) has been 

explored by rms and Kalman filtering [14].  

Characterization and analysis of external faults based on the 

voltage and current waveforms has been investigated for 

lightning, tree and animal contact, and cable faults [15]. 

Waveform characterization features were obtained from 

voltage and current waveforms recorded at distribution 

substations (12.47 kV) for 180 events, and included maximum 

zero sequence current and voltage, fault inception phase angle 

(FIPA), maximum change of current and voltage magnitudes 

(phase and neutral), and maximum arc voltage. 

B. Classification of Power System Events 

Pattern recognition is the science of information procedures 

for classifying, describing and labelling measurements [16]. A 

pattern recognition system includes stages of sensing, data 

pre-processing, feature extraction and classification [17]. 

Work towards developing pattern recognition techniques for 

recognition of power system events includes identifying the 

faulted phases e.g. single-phase-to-ground fault or phase-to-

phase [18] and fault location [19]. Such studies use simulated 

and measured data from fault recorders on power systems. 

Less work has been done to identify the underlying causes of 

events [13]. One study uses the CN2 induction algorithm to 

determine rules to classify four causes of distribution network 

faults (lightning, tree, cable and animal) [15]. The CN2 rule 

induction algorithm induces an ordered list of classification 

rules from a set of classified observations [15]. This is an 

approach which is suitable for fault root cause identification 

where sufficient measurements with classifications are 

available.   

Approaches to identifying animal-caused faults on distribution 

systems according to their root causes have included discrete 

wavelet transforms in combination with artificial immune 

systems [20], Bayesian networks [21], artificial neural [22] 

and fuzzy systems [23]. Artificial neural networks (ANN) and 

linear regression have been used to classify tree- and animal-

caused faults based on distribution utility outage data [4]. 

Other methods applied to automatically diagnose the root 

cause of faults include support vector machines [24], expert 

systems for classifying events from measurements i.e. voltage 

step change, transformer energizing [14], as well as linear 

discriminant analysis [25]. Most studies have focused on 

distribution networks, with few aimed at root cause 

identification for transmission lines [24]. Such studies develop 

the theory and use of pattern recognition for identifying the 

causes of faults and power quality problems. This paper builds 

on the existing work by establishing a basis for classifying 

transmission system faults. 

III. CHARACTERISING TRANSMISSION LINE FAULTS  

A. Data Set  

The transmission system of South Africa’s electricity utility 

Eskom comprises over 28 000 km of lines operated at voltages 

of 132, 220, 275, 400 and 765 kV, of which the bulk are 

400 kV and 275 kV lines. Records from 78 digital fault 

recorders (primarily SIMEAS-R and Siemens P513 devices) 

on the Eskom transmission network at 220kV, 275kV and 

400kV over 13 years to 2008 were available for 2672 

transmission line faults. Current and voltage waveforms are 

sampled at 2500 Hz.  

Fault measurement records were checked to ensure they 

provided adequate pre-fault data and measurements from all 

voltage and current channels. The fault measurement records 

were matched using time, date and line on which the fault 

occurred to a database of 11573 faults developed by Minnaar 

et al. for the same transmission system [26]. This database of 

fault measurements is linked to the underlying fault cause as 

well as contextual information i.e. GIS data, line parameters 

and lightning density. This database addresses key concerns 

raised by Gu and Styvaktakis [13]: each characterized 

waveform is associated with a fault cause that makes this a 

suitable dataset for conducting feature selection and 

classification according to underlying causes; and the large 

data set, entirely based on measurements from an operational 

transmission system, addresses the limitations of many studies 

with too little data.  

The original waveform data from digital fault recorders is 

stored in the IEEE C37.111 Common Format for Transient 

Data Exchange (COMTRADE). Each file represents a unique 

fault event measurement. The following data are available: 

sampling rate; start date and time; faulted phase; distance-to-

fault; red, white and blue phase and neutral currents and 

voltages; number of samples; and timestamp data. The data 

was imported and stored in a Matlab structure. An array of 

structures, compiled with each individual measurement being 

a unique structure (file name is associated for identification), 

enables bulk signal processing of waveform data by repeating 

the same calculations inside a loop to obtain the desired 

characteristics. A symmetrical sequence component 

transformation was implemented in the Matlab Simulink 

environment, built around the discrete 3-phase sequence 

analysis block. The code to calculate waveform characteristics 

utilizes structure arrays in Matlab, so as to make possible the 

bulk signal processing necessary for 2672 waveforms. The 

Simulink model is then called from inside a ‘for’ loop to 

calculate the necessary parameters for each individual 

measurement, which in turn is stored inside a second structure 

array. The outputs of the Simulink model are discrete 

waveforms of magnitudes and phase angles for the positive, 

negative and zero sequence current and voltages. Sequence 

component currents and voltages are output in complex format 

and the rates of change for voltage and current sequence 

components are also exported. These are used to calculate a 

range of values for feature extraction and fault cause 

classification. 
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B. Identifying the start and end of a fault 

The features during a fault are required for characterization, 

making the identification of the start and end of a fault an 

important consideration. The three pre-fault (normal steady 

state operation), fault and interruption stages of measurement 

are illustrated for a single-phase-to-ground fault in Fig. 1. The 

start and end of the fault are identified using sequence 

components derived from the rms profiles. 

 
Fig. 1: Stages of a fault measurement – voltage and current 

 

The beginning of the fault is identified by a detection index 

(𝑑𝐼), similar to that used for segmentation of rms voltage 

measurements [14], based on the difference between 

consecutive values of the positive sequence current: 

                 𝑑𝐼 = 𝐼1(𝑛−1) − 𝐼1(𝑛)               (1)
 
 

A threshold set at 12000 kA/sec marks the start of a fault. In 

most records, measurement continues after the protection has 

operated, so post-fault values must be removed. A fault ‘ends’ 

when the 40ms moving average zero sequence current drops 

below 15% of the peak zero sequence current. Both the fault 

start and end thresholds were determined by inspection until 

the start point and endpoint of all the fault measurements in 

the dataset were captured.  

C. Feature Extraction 

The waveform features extracted in this research were chosen 

on the basis of their possible link to one of the root fault 

causes and their expected ability to identify a cause. These 

features were then tested for statistical significance linking 

them to a cause.   

Characterization and analysis of external faults based on the 

voltage and current waveforms has previously been 

investigated for causes such as lightning, tree and animal 

contact and cable faults [15] and several features considered in 

that study were retained, albeit in a modified form. Maximum 

zero sequence currents and voltages are defined relative to 

pre-fault levels, enabling measurements at different voltage 

levels to be considered together, including relating the 

maximum values to pre-fault conditions. Factors such as fault 

level, pre-fault loading level, type and location of load, 

network configuration or capacitors being switched may 

influence the fault waveforms measured on the same line.  

Several parameters from the measurement waveforms were 

calculated to test for these influences using the following 

strategies: 1) peak/maximum values relative to pre-fault values 

enable measurements from different voltage level networks to 

be considered together, 2) maximum changes of current were 

used to identify the influence of the fault flashover 

mechanism, and 3) the magnitude of characteristics at specific 

time intervals from the start of the fault were compared, 

characterizing the development of the fault. 

The following fault features were extracted. 

 

1) Faulted Phases 

The relevance of the faulted-phases feature is based on the 

hypothesis that the physical flashover mechanism is a 

consequence of the underlying fault cause. The relationship is 

illustrated in Table 1, where the faulted phases (L) or ground 

(G) according to underlying cause are shown for the 220kV, 

275kV and 400kV networks. More than 90% of all faults on 

the South African transmission network between 1995 and 

2008 were single-phase-to-ground faults and pollution-caused 

faults are almost exclusively single-phase-ground-faults.  
 

TABLE I  
FAULTED PHASES ACCORDING TO UNDERLYING CAUSE 

Faulted 

Phases 

Bird 

streamer Fire Lightning Other Pollution Total 

L-G 1070 453 534 261 122 2440 

L-L-G 15 33 66 8 1 123 

L-L 
 

25 1 2 
 

28 

L-L-L 30 4 32 4 

 

70 

L-L-L-G 4 3 3 1 

 

11 

Total 1119 518 636 276 123 2672 

 

2) Maximum Change of Current (∆𝐼𝑚𝑎𝑥0 , ∆𝐼𝑚𝑎𝑥1 , ∆𝐼𝑚𝑎𝑥2) 

The maximum change of current during the initial transient 

stage, calculated using (2) as the maximum difference between 

consecutive samples after the fault has triggered, provides a 

picture of the dynamic state of the fault. The maximum change 

for each positive, negative and zero sequence component is 

treated as an individual feature.  

              ∆𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐼𝑛+1 − 𝐼𝑛 )             (2) 

This feature is chosen to test for a relation between the 

underlying cause and the rate of rise of fault current during the 

initial stages of a fault.  

 

3) Maximum Sequence Voltage Ratio (Vmax2, Vmax0) 

The degree of unbalance [15] during a fault is calculated from 

the maximum negative and zero sequence voltages during a 

fault relative to their respective pre-fault values: 

            𝑉𝑟𝑒𝑙_max _𝑖 =
𝑉𝑓𝑎𝑢𝑙𝑡_max _𝑖

𝑉𝑝𝑟𝑒−𝑓𝑎𝑢𝑙𝑡
                (3) 

 

Where i is either 0 or 2 

  

4) Sequence Component Currents at ½ and 1 Cycle  

      (I0(0.5), I1(0.5), I2(0.5), I0(1), I1(1), I2(1)) 

The values of the positive, negative and zero sequence 

component currents, illustrated in Fig. 2 for the zero sequence 

current component I0, are measured at ½ cycle and one whole 

cycle after the fault trigger. 
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Fig. 2: I0 at ½ and one cycle after fault trigger 

 

5) Maximum Sequence Current to Pre-Fault Current Ratio 

(I1max, I0max) 

Peak values of sequence currents are calculated relative to the 

pre-fault current levels on the feeder.  

          𝐼max _𝑟𝑒𝑙 =
𝐼𝑝𝑒𝑎𝑘 𝑝𝑜𝑠𝑡−𝑓𝑎𝑢𝑙𝑡

𝐼𝑝𝑒𝑎𝑘 𝑝𝑟𝑒−𝑓𝑎𝑢𝑙𝑡
              (4) 

This gives an indication of the total state of change in current 

relative to the state of the network/load prior to fault 

occurrence. This relative value of fault current may provide 

more information than peak fault current, which is dominated 

by the network parameters. Maximum sequence current is 

therefore largely independent of network conditions or fault 

cause. 

 

6) Fault Resistance (Rfault_onecycle, Rfault_twocycle) 

The underlying mechanism by which a fault is formed and the 

medium along which fault current moves differs for each of 

the major fault causes. Bird streamer fault current flows via 

the liquid streamer, while fault currents due to fires are 

conducted via air and smoke particles. The resistivities of 

these mediums differ significantly. Similar to sequence 

currents, the fault resistance is calculated one and two cycles 

after the initiation of the fault (and denoted as Rfault_onecycle and 

Rfault_twocycle) to account for the dynamic nature of faults. The 

line resistance from the point of measurement to the fault is 

based on the fault impedance values used for the protection 

settings for each line. The equations used to calculate fault 

resistance are based on the fault calculations according to 

Glover and Sarma [27]. The area of high impedance faults and 

the modelling of fault arcs, while worthy of investigation, are 

not dealt with in this paper. Table II shows the mean (µ) and 

standard deviation (σ) values of the Fault Resistance in ohms.  

 
TABLE II 

FAULT RESISTANCE 
  220kV 275kV 400kV 

Characteristic µ σ µ σ µ σ 

Rfault_onecycle 20.30 14.73 36.23 148.70 41.99 118.06 

Rfault_twocycle 17.94 13.55 31.69 130.15 37.88 124.74 

 

7) Fault Inception Phase Angle (FIPA) 

Fault inception phase angle (FIPA) was considered in case the 

large dataset could give a clear indication of the relationship 

between fault types and fault peak. Its inclusion is based on 

statistical data presented by Barrera et al. that certain fault 

causes have fault inception angles near the peak of the 

waveform [15]. In particular, it is reported that cable faults 

and animal faults have average FIPA values of 93.7ᵒ and 99.3ᵒ 

respectively [15].  FIPA is calculated as the time of the trigger 

after the last zero-crossing prior to the fault. For multi-phase 

faults, FIPA is assumed to be the phase angle closest to the 

peak. 

 

8) Sequence Component Fault Current Time Constant  

The Sequence Component Fault Current Time Constant (τ0, 

τ1, τ2) is introduced as a waveform feature. It treats the fault 

waveform response in a similar manner to a first order linear 

time-invariant system. The time constant is calculated as the 

time taken from fault trigger to 0.63 of the difference between 

maximum fault current and pre-fault current for each sequence 

component, as illustrated in Fig. 3. The time constant for each 

sequence component current is an individual feature that may 

indicate the dynamic response of the transmission 

line/network to the fault type.  

 

 
Fig. 3: Sequence Component Fault Current Time Constant 

 

Table III shows the mean (µ) and standard deviation (σ) 

values of the Sequence Component Fault Current Time 

Constants in milliseconds [28]. These values are very similar 

across sequences phases; however they differ across system 

voltage levels. These results are indicative of most of the 

waveform characteristics extracted, illustrating the effect of 

the system rating on the magnitudes and changes in voltages 

and currents in response to faults. The voltage of the system 

on which a fault occurs should be included as a feature to 

analyze measurement data. 
TABLE III  

POSITIVE, NEGATIVE AND ZERO SEQUENCE FAULT CURRENT 

TIME CONSTANT STATISTICS 
  220kV 275kV 400kV 

Characteristic µ σ µ σ µ σ 

Positive current Time 

Constant (τ1)  

12.81 1.48 26.85 70.01 22.72 71.41 

Negative current Time 

Constant (τ2) 

12.85 1.61 25.92 70.21 21.80 76.20 

Zero current Time 

Constant (τ0) 

13.46 7.14 22.31 46.26 20.27 63.65 

D. Statistical Significance of Waveform Features 

Analysing the waveform feature data by fault cause indicates 

that the fault cause influences the majority of them. The 

statistical significance (to the 0.05 level) of the causes (bird 

streamer, fire, lightning, pollution and other) on single-phase-

to-ground faults occurring on 220kV, 275kV and 400kV 

networks, representing more than 90% of all faults, was tested 
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by analysis of variance (ANOVA), for which results are given 

in Table IV (‘yes’ indicates statistically significant). The 

differences across voltage levels for all the waveform features 

are statistically significant, with the exception of FIPA, 

indicating that fault causes may be differentiated by a 

combination of these features. 

 
TABLE IV 

 STATISTICAL SIGNIFICANCE OF CAUSES INFLUENCING 

WAVEFORM FEATURES 

FEATURE 400kV 275 kV 220kV 

∆Imax1, ∆Imax2, Rfault_onecycle, 
Rfault_twocycle yes yes yes 

∆𝐼𝑚𝑎𝑥0, I1(0.5), I1(1), I0(1), I1max, I0max yes no yes 

Vmax2, Vmax0 yes no no 

I2(0.5), Pos. current Time Constant (τ1) yes yes no 

I2(1), I0(0.5), I2max no no yes 

FIPA no no no 

Negative current Time Constant (τ2), 
Zero current Time Constant (τ0) no yes no 

IV. FAULT-ROOT IDENTIFICATION BASED ON PATTERN 

RECOGNITION  

This section explores the classification of transmission line 

faults according to underlying cause using pattern recognition 

techniques. The individual relevance of features is determined 

with respect to the four major causes identified and 

classification is treated as a multiclass problem. Features are 

ranked according to their relevance in separating fault causes 

and classifiers are built by nested subsets. The full feature set 

consists of 7 contextual features (environmental, climatic and 

diurnal) and 21 waveform features (shown in Table IV, 

including system voltage).  

A key finding is that the fault frequencies have statistically 

significant differences with respect to time-of-day, season, and 

climate as represented by rainfall area in South Africa. The 

differences are not uniform across the voltage levels; hence 

voltage level is also a feature. The contextual feature set also 

introduces other features considered relevant. Thus the 

contextual features describing fault occurrence are hour of 

day, month of year, rainfall area, voltage level, line GIS 

number, Eskom transmission grid region and the lightning 

ground flash density [26].  

In this study, feature selection was used first to improve 

understanding and interpretability of the data and secondly to 

identify features for building good classifiers for transmission 

line fault causes. Feature ranking and classification was 

considered for three scenarios, using: a) only the contextual 

feature set, because earlier analysis had shown statistically 

significant differences in fault frequencies by time of day, 

climate and season; b) only the waveform feature set; and c) 

combined waveform and contextual feature sets. Feature 

selection and classification was implemented in the Matlab 

toolbox PRTOOLS [29]. 

A. Feature Ranking 

Feature ranking according to the F-statistic derived with 

ANOVA provides a measure of variance due to each feature 

and a basis for building classifiers. 

 

 
 

TABLE V 

FEATURES RANKED BY F-STATISTIC 

Feature 

Type of 

Feature 
F-

statistic 

Overall 

Rank 

Hour Contextual 90.90 1 

Region Contextual 33.09 2 

Month Contextual 32.16 3 

Nominal Voltage Contextual 29.22 4 

Average ground flash density (Ng) Contextual 25.45 5 

I2(0.5) Waveform 16.06 6 

τ1 Waveform 11.98 7 

Faulted Phases Waveform 11.58 8 

Vmax2 Waveform 10.44 9 

τ2 Waveform 9.97 10 

 

From a full ranking [28], Table V lists the top ten features and 

gives a clear picture of the relevance of each for distinguishing 

faults according to cause. The waveform features with the 

highest F-statistic scores are the maximum negative sequence 

current (half cycle) and the positive sequence time constant 

labelled I2(0.5) and τ1 respectively. Both provide a measure of 

the dynamic response to an event on a transmission line, 

relating to the rate at which sequence currents rise to peak 

fault current. Table V indicates that three individual contextual 

features related to time of occurrence and geographic location 

of a fault are highly relevant to identifying its underlying 

cause. This result is consistent with the success achieved using 

only contextual features for classifying animal- and tree-

caused faults on distribution systems [24]. The ranking also 

gives insight into the relative strength of using the contextual 

and waveform features to identify fault causes.   

B. Classification by Nested Subsets 

The classification problem for transmission line faults is 

defined here as a multiclass problem with five classes. A 

multiclass classifier is a function F:X →Y which maps an 

instance x into a label F(x) [30].  

There are two common approaches to generating F. The first 

is to construct it through a combination of binary classes, e.g. 

logistic regression or support vector machines; and the second 

(used in this study) is to generate F directly e.g. naïve Bayes 

or nearest neighbor (NN) algorithms. The 1-NN classifier is 

proposed for identifying the underlying cause of transmission 

line faults.  

The 1-NN rule is a suitable benchmark for other classifiers as 

it requires no user-specified parameters, making it 

implementation independent, and provides reasonable 

classification performance in most applications [31]. Building 

a series of 1-NN classifiers determines the underlying cause of 

faults. An advantage of 1-NN classification is its conceptual 

simplicity and ease of implementation [32]. 

The 1-NN classifiers comprise five classes, one for each major 

fault cause: birds, fire, lightning, pollution, and other. The 

classifier finds the nearest point in the training set to the 

unclassified point and assigns it to the corresponding label. 

Feature selection for the initial classification is done by 

building nested subsets of features of increasing size. 

Classifier building starts with a subset of one feature (the 

highest F-statistic) and features of decreasing F-statistic are 
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progressively added. For example, using Table V, the first 

subset comprises the feature ranked 1 and the second subset 

the features ranked 1 and 2.  

A classifier is trained using a training set of two thirds of the 

data and performance is evaluated using the test set of the 

remaining third of the data. The entire data set is randomly 

split 30 times into the training and test sets, and the trained 

classifier evaluated against each test set to reduce variance 

from the classification results. Evaluating the classifier in this 

manner provides enough test data for the faults causes that 

occur rarely i.e. other- and pollution-caused faults.  

Classification is conducted according to the three scenarios: 

using only contextual features, only waveform features, and 

the combined feature set. Two combining rules are 

implemented for classification using all the features. The first 

(Rule 1) combines waveform and contextual feature sets by 

relevance using the overall ranking as indicated in Table IV; 

the second (Rule 2) combines the waveform and contextual 

feature sets by adding (in order of decreasing relevance) a 

feature from each set, starting with the contextual set. Once all 

the contextual features are added, the remaining waveform 

features are added to form additional subsets. 

C. Assessing Classifier Performance  

Many classifier’s performance measures are based on the 

confusion matrix. A 2x2 confusion matrix for a 2-class 

classifier (Yes/No) and a test dataset is shown in Table VI 

[33].  
 

TABLE VI:  

CONFUSION MATRIX 

Class Predicted Positive Predicted Negative  

Actual Positive  True Positive (TP) False Negative (FN) 

Actual Negative  False Positive (FP) True Negative (TN) 

 

The most common performance measure calculated from this 

matrix is Accuracy (Acc), which is the proportion of the total 

number of predictions that were correct: 

 

𝐴𝑐𝑐 =
𝑇𝑁+𝑃𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
              (5) 

 

An acceptable Accuracy rate for practical classification may 

be set at 80%. However, Accuracy is an insufficient 

performance measure in applications with imbalanced data 

sets (i.e. one class represents only a small portion of the total 

data) because a classifier ignoring the presence of the minority 

class will show good performance. The fault performance of 

the transmission system is unbalanced across the four major 

fault causes.  

Alternative measures for classifying unbalanced datasets 

include Precision (the percentage of correct positive 

predictions), Recall (the percentage of true positive cases 

correctly identified), and the F-measure [34], which is the 

harmonic mean of Precision and Recall given by 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
           (6) 

 

(Note: the F-statistic used in ANOVA and the F-measure are 

two independent measures defined and used in different 

ways). In this study, the measures used to assess classifier 

performance are overall classification Accuracy and the F-

measure for each fault cause. 

D. Overall Classification Accuracy 

The overall classification accuracy rates indicate that 

classification accuracy up to 90% is achieved when using only 

the five highest ranked contextual features.  

Fig. 4 illustrates overall classification accuracy for contextual, 

waveform and all features. The features are added according 

to the respective decreasing rankings shown in Table IV for 

waveform and contextual features and then according to the 

combining rules defined. For example, for ACC_All_rule1 all 

21 features of Table IV are added according to Rule 1. 

 

 
Fig. 4: Classification Accuracy 

 

Reasonably good classification performance can be achieved 

using only waveform features; the best accuracy achieved is 

0.801 using the seven highest ranked features. It does not 

match the performance achieved using only contextual 

features or combined contextual and measurement features.  

E. Classification Performance using Waveform Features  

Figure 5 illustrates the classification success by F-measure for 

each of the major fault causes, adding features according to 

decreasing F-statistic. Scores above 0.75 are achieved using 

only the two highest ranked features for bird, fire and 

lightning caused faults. The F-measure for pollution-caused 

faults is generally lower than the first three classes, but it 

needs to be considered that pollution is a highly imbalanced 

set (pollution faults represent only a small portion of the total 

data). The performance of the ‘other’ class of faults is the 

poorest for most feature sets and depends on an appropriate 

feature set being selected to achieve reasonable performance. 
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Fig. 5: F-measure using waveform features 

F. Classification Performance using Contextual Features 

The classification performance achieved using contextual 

features is significantly better once five or more features are 

used (with features added by decreasing F-statistic) to build 

the 1-NN classifier. F-measure scores above 0.8 are achieved 

for all classes of faults with bird streamers having the highest 

score of 0.917, as illustrated in Fig. 6. 

 

 
Fig. 6: F-measure using contextual features 

G. Classification Performance using Combined Features 

Combining the waveform and contextual features does not 

improve the classification over that achieved by using only 

contextual features. Fig. 7 shows the F-measure performance 

achieved using combining-rule 2.  

The best classification accuracy of 0.86 is achieved using six 

features (the top three ranked from the waveform and 

contextual sets): Hour, Negative sequence current (half cycle 

after fault initiation), Region, Positive sequence fault current 

time constant, Month and Faulted Phases. The best 

performance achieved with the 1-NN classifier is compared 

with the classification performance of several common 

classifiers with feature selection conducted by sequential 

forward (SFS) and sequential backwards (SBS) wrapper 

selection based on best performance for a particular classifier. 

The classifiers used for the comparison are radial basis neural 

network, decision tree and naïve Bayes classifiers. 

 

 
Fig. 7: F-measure using waveform and contextual features 

combined by rule 2 
 

TABLE VII:  
CLASSIFICATION PERFORMANCE 
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ACC 0.74 0.73 0.74 0.74 0.74 0.74 0.86 

F-measure 

Birds 

0.78 0.77 0.78 0.78 0.80 0.78 0.89 

F-measure 

Fire 

0.82 0.81 0.81 0.81 0.78 0.80 0.88 

F-measure 

Lightning 

0.67 0.65 0.67 0.73 0.68 0.68 0.84 

F-measure 

Pollution 

0.31 0.00 0.30 0.28 0.29 0.34 0.75 

F-measure 

Other 

0.17 0.20 0.16 0.15 0.14 0.15 0.74 

The comparative analysis of classification results shown in 

Table VII demonstrates that the best performance achieved 

with the 1-NN classifier is between 12-14% higher than 

achieved with any of the other classifiers using either forward 

or backward selection. The 1-NN classifier is also shown to 

have considerably better classification performance when 

considering the minority causes (Pollution and Other causes). 

V. IMPLICATIONS OF RESULTS 

Classifiers developed using only the contextual features 

demonstrate the highest level of balanced classification 

performance (F-measure=90%).  The relevance of this is that 

in instances where no physical evidence of the fault is present 

and operators assign fault causes based on contextual 

information (e.g. a fault during a thunderstorm may not be due 

to lightning but is often classified as such [15]), the practice 

overlaps directly with the best classification performance. 

However, the lower classification accuracies achieved with 

waveform features may be relevant when they point to results 

differing from those indicated by the contextual features. 

Using only waveform features to build a classifier produces 

reasonable success levels, even with only the single most 
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relevant feature. While this is an important finding for 

identifying and using fault waveform features for fault 

identification, the classification performance achieved may be 

inadequate for practical applications. An acceptable level of 

accuracy (80%) is achieved with only contextual features and 

by combining contextual and waveform features.  

The concern with classifying faults using only contextual 

features is that actual measurements or observation of the 

event are not considered. In practice, physical observations, 

e.g. flashover markings on towers, are important for 

confirming fault cause. 

The results of automatically classifying faults according to 

cause demonstrate the suitability of pattern recognition 

techniques (particularly 1-NN classifiers) for practical 

applications. Classifying the causes of faults within the 

operational timeframe applicable in a control center has the 

potential to improve transmission system reliability. The 

relevant timeframe has been identified as less than five 

minutes [35]. This work lays the foundation for implementing 

automatic classification of transmission line faults within the 

operational requirements of a transmission system, following 

the structure shown in Fig. 8. The following are the 

requirements for implementing real-time classification: 

a) Knowledge of the power system network, its 

parameters, external geography and climate play a key 

role in identifying fault causes. These contextual 

features should be tabulated in a dataset that can be 

linked to fault measurement waveform data. 

b) Appropriate feature extraction from waveform data is 

critical. This may be done either on the fault waveform 

recorder (or its associated software) or in a centralized 

database. For faster classification, it is preferable to 

conduct post-processing and feature extraction on the 

fault waveform recorder. Where legacy devices are in 

use, without the requisite software or processing power 

to conduct post-processing and feature extraction, it is 

recommended that waveforms should be retrieved to a 

central database for centralized feature extraction. 

c) Waveform and contextual features should be combined 

in a single database forming the platform for 

classification. 

 

 
Fig. 8: Structure for operational fault classification 

VI. CONCLUSIONS  

It has been shown that both contextual and waveform features 

can be identified which have a varying degree of relevance to 

performing classification of events. The accuracy of 

classification using these features has been demonstrated by 

building classifiers using nested subsets. Best classification is 

achieved using only contextual features; however 

classification in this manner does not make use of any 

measurements. Taking waveform features based on 

measurements into account, classification accuracy of 86% is 

achieved using the following set of six contextual and 

waveform features: Hour, Negative sequence current (half 

cycle after fault initiation), Region, Positive sequence fault 

current time constant, Month and Faulted Phases. 

 

The highest classification accuracy achieved using only 

waveform features is 80%. This indicates that faults can be 

classified for underlying cause using only waveform features 

with a reasonable level of success. However this performance 

is inferior to classification accuracies achieved when using 

waveform features in combination with contextual features. 

 

This research shows that the underlying cause of transmission 

line faults can be classified automatically. The results 
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achieved indicate that the 1-NN classifier is a suitable 

classifier for identifying the causes of transmission line faults 

and achieves superior classification in comparison to other 

classifiers. This work lays a foundation for operational 

classification of transmission line faults and the key 

requirements and structure of a fault classification system 

have been developed. 
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