
Watershed-based segmentation of rock scenes
and Proximity-based classfication of watershed regions

under uncontrolled lighting conditions

S. Mkwelo, G. De Jager and F. Nicolls

Department of Electrical Engineering
University of Cape Town, Rondebosch 7700

simphiwe@dip.ee.uct.ac.za

Abstract
A watershed-based segmentation approach that uses

iterative bilateral smoothing with an adapting photomet-
ric similarity parameter for pre-filtering is adopted for the
segmentation of rock scenes. But the resultant segmented
images also contain non-rock watershed regions which are
not desired for measuring rock sizes. A proximity-based
classifier is applied for the removal of the latter using fea-
tures that can be divided into rock shape, edge strength
and region intensity characteristics. Subset feature selec-
tion based on Thornton’s seperability index is used to re-
move redundant and irrelevant features. We achieve fi-
nal classification rates of 89.91% using a simple k-nearest
neighbor Classifier.

1. Introduction

It is desired to segment a scene of rocks on a conveyor belt
in order to facilitate accurate measurement of rock size
distributions. The Machine Vision system under construc-
tion has possible applications in control and optimization
of milling machines. We define a rock size to be the pro-
jected surface area of a rock due to the constraint imposed
by the 2D nature of an image. Based on this assumption, a
rock scene can be accurately segmented by applying a ro-
bust edge detector to find rock boundaries. A wide range
of edge detectors have been implemented and improved
but they are not suitable as they require cleaning and join-
ing of the detected pixels.

A method of choice for many image segmentation ap-
plications is the watershed transform [1], since it over-
comes the shortcomings of traditional edge detectors and
provides a continuous trace of detected edges. In this
approach, an image intensity map is viewed as a topo-
graphical landscape where intensity minima are catch-
ment basins and the ridges are the watersheds [2]. The ob-
jective is to search for the watersheds by region-growing,
growing catchment basins from a predefined set of local
minima until each pixel in the image belongs to one of
the labelled catchment basins. Formal definitions and im-
plementations can be found in [1]. A transformation of

an original image to a gradient image followed by an ap-
plication of the watershed transform should ideally find
rock edges in an image. The general shortcomings of this
approach are over-segmentation and sensitivity to noise.
These can be overcome by careful implementation of a
pre-filtering scheme and a procedure for selecting a set of
predefined local minima.

Linear pre-filtering methods such as a gaussian filter
are not suitable for this application since they blur sur-
faces and edges equally. Instead, edge preserving tech-
niques such as anisotropic diffusion and bilateral filtering
are used. These approaches smooth across surfaces while
treating edges as outliers and thus preserving them [3],[4].
Anisotropic diffusion is an iterative procedure based on a
nonlinear anisotropic version of the heat diffusion equa-
tions proposed by Perona and Malik [3]. It is highly iter-
ative and this is not a desirable property for real-time ap-
plications. On the other hand a Bilateral filter is relatively
non-iterative and the filtering is based on spatial closeness
and photometric similarity of pixels [4]. The key issue
with these approaches is deciding how significant an edge
should be for it to be considered an outlier [3]. Work has
been done in [3] to address this issue.

However, these approaches fail when there are cracks
across rock surfaces. As a result the watershed lines
follow these cracks giving rise to a rock splitting phe-
nomenon. In this work rock splitting is overcome using
a combination of iterative bilateral filtering with an adapt-
ing photometric similarity parameter followed by a hier-
archical analysis of a stack of thresholded watershed im-
ages. In this framework, watershed lines which are likely
to represent rock boundaries are retained and the rest are
discarded. A proximity based classifier is then used to
eliminate spurious regions.

This paper is organized as follows. In the next section
we describe the pre-processing which is involved. In sec-
tion 3, the overall watershed based segmentation method
is described. This is followed by the classification of wa-
tershed regions in section 4. Results are presented in sec-
tion 5. Finally conclusions are drawn in section 6.
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2. Preprocessing

In this section we describe the early image processing op-
erations which are used to achieve rock location estima-
tion. This stage is necessary for predefining a set a min-
ima for the watershed transform. It is divided into adap-
tive thresholding, distance transform and peak detection
by h-domes operations.

2.1. Adaptive Thresholding

An adaptive threshold is computed as the mean of the
neighborhood pixel intensities for each pixel in the orig-
inal image. The key parameter is the neighborhood size
which is critical for the detection of a limited range of
rock sizes. In this work, we use a 2-window approach
where the smaller window of size 25x25 is used for de-
tecting small rocks and the larger one of size 95x95 is used
for detecting larger rocks in a 240x240 image. A logical
or operation is then applied to combine the results. The
resultant output together with the original image is shown
below.

Figure 1: The original image and its thresholded version

2.2. Applying a Distance transform (DT)

The result of the previous operation usually contains con-
nected white areas which are supposed to be separated ar-
eas. To resolve this, we apply a distance transform (DT)
to the inverted version of the thresholded image so that the
locations of the local maxima of the DT output are the ap-
proximate blob centers. Rock locations can be estimated
by extracting the peaks of the distance transform (DT).

2.3. DT Peak extraction by h-domes

At this stage we aim to extract the peak locations of the
distance transform. This is achieved using the h-domes
operation which is based on gray-scale reconstruction by
dilation. Gray-scale reconstruction literature can be found
in [5]. The sequence of operations commences with a ver-
tical down shift of the DT by a constant h, followed by
a grey-scale reconstruction by dilation of the original DT
using the shifted version. The drawback of this procedure
is its sensitivity to the h-parameter. If set too high, small

blobs are missed and if too low, large and non-circular
blobs are split. One approach for solving this is to com-
pute the centroids of white areas for the correction of in-
correct splitting during segmentation. Markers obtained
by both methods are shown below.

Figure 2: The blob centroids and distance transform peak
locations

3. The watershed-based segmentation of
Rock Scenes

The watershed-based segmentation approach consists of
an iterative bilateral pre-filter with an adapting photomet-
ric similarity parameter, a watershed transform for finding
rock edges and a scheme for finding watershed lines that
are most likely to be rock edges. The overall structure is
shown in figure 3. In this structure, the input signal is the
original image, F1 denotes the first filtering operation, G1
is the gradient operation on the first filtered image, DM is
the marker image from the distance transform, CM is the
marker image containing centroids of white areas and W1
is the first watershed transformation.

Figure 3: Segmentation algorithm structure
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3.1. Bilateral filtering

3.1.1. Theory

In this application, a filter that preserves edges is required
as these are indicators of rock boundaries. The Bilateral
filter obeys this requirement. It performs a combination
of both domain and range filtering operations based on
spatial closeness and photometric similarity respectively
[4]. A Bilateral filter as defined by Tomasi and Manduchi
has the form:

h(x) = k−1x
∫ ∫

f(ξ)c(ξ, x)s(f(ξ), f(x))dξ (1)

where the normalization term is

k(x) =
∫ ∫

c(ξ, x)s(f(ξ), f(x))dξ. (2)

A pixel value at x is replaced with a linear combination of
similar and nearby pixels. The terms c(ξ, x) and s(f(ξ, x))
are the closeness and photometric similarity functions of
the Euclidean distance between their arguments respec-
tively. Both functions should generally decrease with in-
creasing distance. A common case is where these func-
tions are defined as Gaussian functions of the Euclidean
distances.

3.1.2. Gaussian Bilateral filtering

In this version, the spatial closeness and photometric sim-
ilarity function are defined as Gaussian functions of their
arguments as shown below.

c(ξ, x) = e−1/2(d(ξ,x)/σd)2 (3)

where
d(ξ, x) = ‖ξ − x‖ (4)

is the Euclidean distance between ξ and x. The photomet-
ric similarity is defined as:

s(f(ξ), f(x)) = e−1/2(δ(f(ξ),f(x))/σr)2 (5)

where
δ(f(ξ), f(x)) = ‖f(ξ) − f(x)‖ (6)

is the absolute difference of the intensity values f(ξ) and
f(x). This implementation of the bilateral filter requires
prior values of the space parameter σd and the similarity
or range scale parameter σr. The space parameter has lit-
tle effect on the preservation of edges, it only imposes a
closeness constraint so that pixels far away from the kernel
center have little influence on the kernel weighted mean.
On the other hand, the value photometric similarity pa-
rameter is critical and can be estimated using the global
gradient variation as defined in [3] for the anisotropic dif-
fusion technique.

σr = 1.4826medianI(‖∇I − medianI(‖∇I‖)‖) (7)

where ‖∇I‖ is the gradient magnitude of the image I. A
more accurate estimate of this parameter can be achieved
by computing the local gradient variation in predefined
neighborhoods and interpolating to cover the whole im-
age. A criterion for an optimal similarity parameter is rock
edge preservation and surface crack smoothing. This re-
quirement cannot be met using a single filtering operation
nor iterated filtering where a single value for σris used
because there is a trade-off on the magnitude σr. As a
cure for this, an iterative bilateral filter with an adapting
σr value is proposed.

3.1.3. Iterative Bilateral filtering with an adapting σr pa-
rameter

In this approach, the image is effectively filtered n-times
with the range scale parameter σr estimated each time us-
ing equation 7 and weighted accordingly. The weights
increase monotonically from the first to the last filter-
ing operation so that the resultant n-images exhibit fewer
cracks as one moves from the first to the last filtered im-
age. Multi-scalar techniques are usually performed in the
domain direction to facilitate the detection of a wide range
of object sizes. In this application the domain scale is kept
constant and the range scale parameter is varied to detect
edges of various strengths. This scheme forms the first
stage of our watershed-based segmentation approach as
shown in figure 3.

3.2. The gradient Watershed Transform

A gradient watershed transform can be classified as an
edge detector because it locates regions of high gradients
given a gradient as the input image. Its main drawback is
over-segmentation which is usually due to the inaccurate
determination of markers. In this work, we use the out-
puts of the pre-processing algorithm as the set of markers
as shown in figure 3 . A parallel watershed scheme is then
applied to the filtered images as shown in figure 3.

3.2.1. Multiple Watershed Analysis

This approach considers a collection of n-binary water-
shed images as containing a population of edge samples
which is likely to contain the desired combination of edge
samples. A summation of the n-binary watershed images
followed by a multi-level thresholding procedure is firstly
executed. The n thresholds are integers with the minimum
threshold being 1 and the maximum being n. The output is
a stack of n binary watershed images with the bottom level
image containing all the watersheds from the n-images
and the top image containing the watersheds which are
most likely to be rock edges but have poor pixel connec-
tivity. The underlying assumption is that a watershed line
is likely to be a rock edge if it survives most of the thresh-
olding. The watershed image from the centroid markers
has highly merged regions and is placed at the top of the
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stack as shown in figure 3.
The evaluation algorithm collects regions starting

from the highly merged regions at the top of the stack to
the highly split regions at the bottom. The selection crite-
rion is:

(
Ablob

Aregion
� φ) ∩ (C � ρ) (8)

where Ablob is the area of the corresponding white area
in the thresholded image, Aregion is the area of the wa-
tershed region of interest, ρ ranges between 0 and 0.75, φ
ranges between 0.5 and 0.8, and C is the circularity of the
region of interest which is calculated as:

C =
4πAregion

P 2
(9)

where P is the perimeter of the region. The final output of
the segmentation algorithm is shown in figure 4.

Figure 4: Segmentation output

4. Classification

As can be seen in figure 4 that the segmentation output
contains spurious regions in addition to rock regions. The
purpose of a classifier in this context is to discriminate
between rock and non-rock regions. In this section we
present the adopted methodology for data collection, fea-
ture descriptions, feature subset selection results, a brief
description of the knn classifier and its application to the
problem.

4.1. Methodology

A data set consisting of 20 segmented images is assem-
bled. The data set has 2415 regions or ”potential rocks”,
an average of 120 regions per image and the number of re-
gions per image ranges between 86 and 146 regions. The
data set is partitioned into training, validation and testing
sets with proportions as shown in table 1. The labelling
of examples is performed manually using the author’s dis-
cretion and thus an element of human error is expected.

Table 1: Data partitioning .

Partition Images Regions Fraction of actual rocks
Training 10 1117 22.74%

Validation 5 644 13.35%
Testing 5 654 12.69%
Total 20 2415 17.52%

4.2. Feature extraction

Eleven features are measured and can be broadly divided
into rock shape, edge and gray level characteristics.

• Centroid to boundary distance variance feature
is measured by firstly finding the centroid of the re-
gion c and its boundary pixel coordinates b. This
measure is computed as the variance of the dis-
tances from c to each of the bi pixels.

• Proportion of dark interior pixels feature is com-
puted as the ratio of the number of detected dark
interior pixels of the region to the total area of the
region.

• Proportion of dark boundary pixels feature is
computed as the ratio of the number of dark bound-
ary pixels to the region perimeter.

• Proportion of thresholded area to region area
feature is computed as the area of the regions in the
the adaptively thresholded image to the area of the
corresponding region of interest.

• Average interior gray level feature is computed
as the ratio of the total gray level on a small disk
around the region centroid to the area of the disk.

• Average boundary gray level feature is computed
as the ratio of the total boundary gray level to the
perimeter of the region.

• Average interior gray level gradient feature is
computed as the ratio of the gray level gradient on a
small disk around the region centroid to the area of
the disk.

• Average boundary gray level gradient feature is
computed as the ratio of the gray level gradient on
the boundary to the perimeter.

• Boundary and interior gray level absolute differ-
ence is computed as the absolute difference of the
boundary and interior gray level features.

• Boundary and interior gradient absolute differ-
ence is computed as the absolute difference of the
boundary and interior gradient features.

• Interior gray level variance is computed as the
variance of the gray levels inside the region.
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4.3. Feature subset selection

Proximity based classifiers are sensitive to irrelevant and
redundant features [6] which impair the separability of the
data in the feature space. Feature subset selection proce-
dures attempt to remove such features and thus improve
the separability of the data. In this work, we use Thorn-
ton’s separability index as an optimization objective func-
tion such that the feature set with the maximum separa-
bility index is sought. A separability index of unity rep-
resents the case where the classes are separate with no
overlap while a zero index represents total mixing of the
classes. An evaluation of the separability index function
is carried out for all the 2047 possible combinations of
features using equation 10.

si =
Σn

i=1(f(xi) + f(x′
i) + 1)mod2

n
(10)

Where x′ is the nearest neighbor of x and n is the number
of training examples or points. After these evaluations, the
feature combination with the maximum separability index
is selected. Table 2 shows the maximum separability in-
dex when all the features are present and after the optimal
combination was selected on the training set. A set of 6
of the 11 features consisting of the centroid to boundary
distance variance, proportion of dark interior pixels, aver-
age interior gray level, average boundary gray level, dif-
ference of interior and boundary gray levels, and the dif-
ference between interior and boundary average gradients
are retained as the optimal feature set.

Table 2: Table of separibility indices.

All features Optimal features

78.25% 82.45%

4.4. Classifier training

This subsection provides a brief description of the k-
nearest classifier and the training results.

4.4.1. The K-nearest neighbor (knn)

A query point is assigned a label of the majority of its k-
nearest training points. The majority vote is achieved by
averaging the labels of the k-nearest training points so that
the negative effect of erroneous points in the data is can-
celled. Euclidean distance is commonly used for quanti-
fying distance in an N-dimensional space. The parameter
k is an odd integer and is selected by cross validation on
independent data.

4.4.2. Finding the optimal k-value

A range of k-values between 1 and 25 are preselected and
for each value the knn algorithm is executed for the la-

belling of the validation data set whose labels were pre-
determined manually for comparison purposes. The per-
centage accuracy is recorded as the percentage of points
which are correctly labelled and is plotted in figure 5. The
k-value with the highest accuracy is selected as shown in
table 3.

Table 3: The optimal k-value.

k-value percentage accuracy

13 90%

Figure 5: Training results

5. Results

5.1. Testing for generalization

The performance of the knn is evaluated on independent
test data to test its generalization to new unseen data. The
test set consists of 654 feature vectors from 5 images.
Classification rates of 89.9 percent are achieved using a
k-nearest neighbor with the k-value of 13. The visual re-
sults of classifying the regions on the 5 images are shown
in figure 6. A visual comparison of the manually classi-
fied regions and the knn classified regions shows that the
classifier has generalized well. The results of applying

Table 4: Generalization accuracy

k-value classification accuracy

13 89.91%

other classifiers to the test data set are shown in table 5.
It can be seen that the regularized least squares classifier
(RLSC) outperforms all the other classifiers on this data
set.

111



Table 5: Performances of other classifiers

PNN SVM RLSC

91.59% 90.07% 92.35%

6. Conclusions

Based on the above findings and results, the following
conclusions can be drawn.

• The rock scene segmentation algorithm does trace
the rock edges as required. However, the problem
of quantifying its performance is not tackled.

• The knn classification results show that the selected
set of features is effective and confirms 89.9 percent
of the target labels.

• A comparative evaluation of various classifiers
shows that RLSC outperforms the other approaches
on the test set.
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