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I. ABSTRACT

Shape recognition is essential for robots to perform tasks
in both human and industrial environments. Many algorithms
have been developed for shape recognition with varying re-
sults. However, few of the proposed methods actively look for
additional information to improve the initial shape recognition
results. We propose an initial system which performs shape
recognition using the euclidean distances of Fourier descrip-
tors. To improve upon these results we build multinomial
and Gaussian probabilistic models using the extracted Fourier
descriptors and show how actively looking for cues using
mutual information can improve the overall results. These
probabilistic models achieves excellent results while signifi-
cantly improving on the initial system.

II. INTRODUCTION

The use of robots in industrial and household environments
is steadily on the increase. A huge part of robots functioning
in these environments is recognising objects. Textural and
feature-based approaches are often not appropriate for these
types of applications because parts may contain little or no
distinctive features other than boundary shape. Environments
may not have consistent lighting conditions which can ad-
versely affect these approaches. We use Fourier descriptors
to extract boundary information to perform shape recognition.
Polar co-ordinates are selected as our shape signature for the
descriptors.

Two shape recognition systems are proposed in this paper.
The first system uses the euclidean distance between the
descriptors to determine the class of each shape. We chose
the toy problem of a child’s shape puzzle because the shapes
were relatively arbitrary and certain shapes were also similar.
This was selected to determine the robustness of the system.
The second system aims to improve on the shape recognition
system that uses just euclidean distance. For this system close-
up images of the shapes were captured as input to the system.
Here we propose using the Fourier descriptors extracted in a
probabilistic manner. Multinomial and Gaussian distributions
are built using the Fourier descriptors. We then include an
active vision component in the form of mutual information.
When the system is determining the correct object sequence,
mutual information provides the system with the ability to

select the position in the sequence which it is most unsure
about.

In our experiments we show that using the probabilistic
models with mutual information outperforms both using just
the Fourier descriptors as well as the probabilistic models
without mutual information.

The structure of the paper is as follows: The next section
describes related work. Section IV elaborates on the problem
and Section V discusses the Fourier descriptors. Section VI
describes the polar co-ordinates and the results for the first
system. A complete description of the probability models is
presented in Sections VII. Section VIII presents further exper-
imental results and discussion. The conclusion is discussed in
Sections IX.

III. RELATED WORK

Various shape representation methods, or shape descriptors,
exist in the literature. These methods can be classified into two
categories: region based versus contour based. In region based
techniques, all the pixels within a shape are taken into account
to obtain the shape representation [19],[18]. Contour based
shape representation exploits shape boundary information.

Fourier descriptors are contour based and capture global
shape features in the first few low frequency terms, while
higher frequency terms capture finer features of the shape.
Wavelet descriptors can also be used to model shape and have
an advantage over Fourier descriptors in that they maintain the
ability to localise a specific artifact in the frequency and spatial
domains [20]. However, wavelet descriptors are impractical
for higher dimensional feature matching [22]. The Fourier
Descriptor method can also be easily normalized.

Fourier descriptors are a widely used, all purpose shape
description and recognition technique. They have been used
in a variety of fields over the years, including commerce,
medical, space exploration, and technical sectors. In the
field of computer vision, Fourier descriptors have been used
for human silhouette recognition [12] for surveillance sys-
tems, content based image retrieval [24],[13], shape analysis
[23],[14], character recognition [15],[16] and shape classifi-
cation [11]. In these methods, different shape signatures have
been exploited to obtain the Fourier descriptors. These include
central distance, complex coordinates, curvature function, and



Fig. 1. The board with the shapes removed

cumulative angles [7]. Most systems use complex coordinates
to model the shape boundary [21],[12] but we use polar
coordinates because in our experiments this method produces
more accurate results.

There have been a number of probabilistic based models
for shape recognition proposed such as using Procrustean
models[10], probability density functions [1], geometric fea-
tures [5] and generative models [3] to name a few. None of
these methods use Fourier descriptors as their input parameter
to the shape recognition system. In addition none of these
methods use active vision by incorporating mutual informa-
tion to improve their initial results. Mutual information was
introduced by [9] as a viewpoint selection mechanism for
active vision, which has been subsequently used/proposed by
[6][2][17]. As noted, this can be expensive to calculate, and
requires the collection of extensive statistics at training time,
although as [9] discussed, it provides the optimal strategy
provided the underlying models are correct. Using mutual
information also makes it easy to incorporate probabilistic
assumptions to assist with active information selection. Our
framework follows that of [9] and [4] in terms of the general
Bayesian form of our updates and we use a sampling scheme
to make the mutual information calculations tractable.

IV. THE PROBLEM

A board containing cut out cartoons of different animals was
used in the experiments. The shapes were removed from the
board and placed on table. Figure 1 and Figure 2 display the
board and the shapes used in the experiments. For each shape
20 close-up images were also captured. Information from these
images are used in the probabilistic models.

V. FOURIER DESCRIPTORS

These images are initially converted to grayscale and then
into binary images. The method presented in [8] is used to
detect and label the various objects boundaries. Each shape

Fig. 2. The shapes that need to be recognised

is then segmented from the image and stored. The same
procedure is followed for all captured images.

The set of (x,y) boundary coordinates for each shape is
converted to polar coordinates. The Fast Fourier Transform
(FFT) is then taken for each set of values. The formula used is
described in equation 1. Rotation and changes in the starting
point only affect the phase of the descriptor. All the phase
information can be removed by taking the absolute values
of the descriptor elements. It has been shown that the low
frequency components of the Fourier Transform are sufficient
for shape recognition[12][24] and thus the entire transform
does not need to be used. We found that using the first
15 Fourier co-efficients (excluding the very first component
F(0)) provided sufficient discriminatory information to model
a shape. F(0) is the lowest frequency term and is the only
component in the Fourier descriptor that is dependent on the
actual location of the shape. By ignoring the first component,
it becomes translation invariant. F(0) tells us nothing about
the shape; only mean position. The Fourier Descriptor is then
normalized to remove any scaling effects. The FFT of the
shape is described as:

F(i) = FFT{r}i, (1)

where
r(s) =

√
(x(s)− xc)2 + (y(s)− yc)2, (2)

xc, yc are the shape centroids, x(s), y(s) are the boundary
coordinates of the s’th point, r is the vector of radii, and
FFT{.} denotes the discrete fast fourier transform.

VI. RECOGNITION USING POLAR CO-ORDINATES

Each shape boundary is then matched to the shapes ex-
tracted from the board using euclidean distance. Since the
energy in the Fourier components decreases sequentially, we
artificially boost the contribution of each component. We have
found that as the number of components increases, increasing
the value used to boost the components works best when
calculating the euclidean distance. The shape on the board



Fig. 3. Close-up images of the shapes

TABLE I
RECOGNITION RESULTS

Shape Complex Coordinate Method Polar Coordinate Method
Whale yes yes
Seal no yes
Fish no no
Crab no yes

Dolphin yes yes
Mussel no yes
Snail no yes

Octopus no yes
Star Fish yes yes
Tortoise no no

with the smallest euclidean distance to the shape on the table
is considered to be the match.

A. Results

The shapes used in the experiments are in the form of
animals which include a tortoise, whale, seal, dolphin, fish,
crab and so on as seen in Figures 1-3. There are ten shapes
in total. Many shape recognition systems use complex coordi-
nates to model the shape boundary but we opted to use polar
coordinates because in our experiments this method produces
more accurate results. Table I shows the results obtained from
both methods.

The complex coordinate system recognises four shapes cor-
rectly while the polar coordinate system correctly recognises
eight out of the ten shapes. It incorrectly identifies the fish
and the tortoise shapes. Figure 5 displays the first fifteen
dimensions of the Fourier descriptors extracted for the fish
shape from the board and the tortoise shape and the fish
shape extracted from the cut out pieces. The system incorrectly
recognises the fish shape as the tortoise as this produces the
smallest euclidean distance. Looking at the Fourier descriptor
components, we can see that the tortoise and fish descriptors
are fairly similar (produces similar peaks) and could be easily
confused. The fish shape actually has the second smallest
euclidean distance. A similar situation occurs when trying to
recognise the tortoise shape.

VII. PROBABILITY MODELS

A. Multinomial distribution

For the multinomial distribution we extracted the Fourier
Descriptors from the dataset containing the close-up images

of the shapes. The 20 close-up images for each shape were
split into two sets containing 14 images for training and 6
images for testing. The training set was further split into two
sets containing 7 images each. One was used for training and
the other as a validation set. This was done to determine a
quasi-ground truth histogram distribution which can be used
for testing. The euclidean distance was calculated between
every image in the training and validation set. This process
was carried out 10 times. The minimum distance value was
then determined which identified which object class the system
thought each image belonged to. A distribution histogram for
each image class was then calculated. A bias was placed at
the correct class to provide the system with a reliable ground
truth distribution.

Let N be the number of shapes. D the dimension of the
Fourier transforms (in this case we used 15 descriptors). Let
x represent as possible permutation x ∈ P ⊂ {1..N}N . Here,
P denotes all permutations of N objects, hence is the subset
of {1..N}N which contains no repetitions. Observation O for
the close-up shapes takes the form O = [O1, O2, ...ON ], where
On ∈ V ⊂ (Z+)N which are the counts in the histogram for
test images in class n derived above. Let θ = [θ1, θ2...θN ]
represent the parameters of the distributions for each of the
object classes. For the multinomial model we use θn = αn,
where αn is the multinomial mean vector set using the
counts from the training images. For initialisation a noisy
prior is selected for the board. This is done to incorporate
the effects/noise that may occur due to illumination changes
and the camera or lens used. The prior for the board can be
represented by π(x). The probability of a permutation given
all observations is described as:

P (x|O) =
P (O|x) · π(x)

P (O)
∝ π(x)

∏
n

P ′(On|θxn), (3)

where P ′(On|θxn
) = Mult(On|αxn

) = (M !/
∏

mOnm!)∏
n α

Onm
xn

for the multinomial likelihood, where m ranges
across the histogram bins, and M is the number of test images
per class.

Bayes theorem can be used to update the probability after
each new individual observation. This is given by:

P0(x) = π(x)

Pt(x|O1..Ot) ∝ P ′(On(t)|θxn(t)
)Pt−1(x|O1, ..Ot−1),(4)



Fig. 4. Boundary of a shape depicting the Fourier descriptors converted to polar co-ordinates

Fig. 5. Fourier Descriptors

where n(t) is the index of the observation seen at time t.
Mutual information(MI) assists in the selection of the

position to look at since there can be no repetitions. Once
the system is fairly certain of the position of a class in the
permutation, mutual information can assist in deciding which
position to look at next i.e. which is the most uncertain.
Randomly selecting the next position to look at does not
not take this information into account.The Mutual Information
selection rule is as follows:

n(t+ 1) = argmaxn 6=n(1)..n(t) MI(On;x). (5)

Mutual information values increases with uncertainty. In this
equation we want to select the position in the permutation with
the most uncertainty for a given observation.

We can rewrite the above equation in terms of the condi-
tional entropy as follows:

MI(On;x) = H(x)−H(x|On), (6)

where H(.) represents the Shannon entropy and H(.|.) rep-
resents the conditional entropy. We need to minimise the
conditional entropy. This is described as:

n(t+ 1) = argminn 6=n(1)..n(t)H(x|On). (7)

The conditional entropy can be written as:

H(x|On) = −
∑

On∈V
Pt(On)[

∑
x′∈P

P (x′|On, On(1), ...On(t)) ·

log(P (x′|On, On(1), ...On(t)))]. (8)

To evaluate Pt(On), we introduce mixing coefficients β

βm =
∑

(x|xn=m)

Pt(x), (9)

for m = 1..N, which weight the likelihoods for each class. This
gives us

Pt(On) =
∑
m

βm · P ′(On|θm). (10)

To avoid exhaustively summing across V in equation 8, we
can consider the conditional entropy as the expectation across
Pt(On) and approximately evaluate the sum by sampling from



this distribution.

H(x|On) = Eo∼Pt(On)[H(x|o)]

≈ 1

n

∑
oi

H(x|oi)

= − 1

n

∑
oi

[
∑
x′∈P

P (x′|oi, On(1), ...On(t)) ·

log(P (x′|oi, On(1), ...On(t)))], (11)

where E denotes the expectation. oi in equation 10 represents
the samples drawn from the mixture distribution described in
equation 10 where i ranges from 1 to n number of samples.

B. Gaussian Distribution

The image set was treated in the same manner as used in
the multinomial distribution. The training images were used to
learn a Gaussian distribution for each class, θn = (µn, σn). For
σn we used a diagonal covariance matrix. For each observation
On we included all test images On = [On1...OnM ], where
M is the number of test images per class. The feature space
is V = (R+)DM since we have one D dimensional Fourier
descriptor for each image. For the likelihood in equation 10 ,
we used joint likelihood of these observations.

P ′(On|θ) = P ′(On|µ, σ) =
∏

i=1..M

N (Oni|µ, σ), (12)

where N represents the Gaussian distribution and Oni is the
i’th descriptor of observation n.

Since feature space is now continuous the summation in
equation 8 changes to an integral. We can use the sampling
technique to approximate this integral as in equation 11.

H(x|On) =

∫
V
H(x|o)Pt(o)do

= Eo∼Pt(On)[H(x|o)]

≈ − 1

n

∑
oi

[
∑
x′∈P

P (x′|oi, On(1), ...On(t)) ·

log(P (x′|oi, On(1), ...On(t)))]. (13)

The sampling distribution used here is the same as described
in equation 10, with P ′(On|θ) as in equation 12.

VIII. EXPERIMENTS

The sequence on the board was used as the ground truth.
Noise was added to the initial models to take into account
possible illumination changes and noise introduced by the
camera. Each simulation was run 100 times with a different
split of the training and the testing images each time. For both
models, we want to identify the correct sequence. Once the
system is fairly certain about the object at a specific position
mutual information allows us to select the next position to
look at which the system is most unsure about. In the random
case this position is randomly selected. For the shape puzzle
the initial model for board was very good so we introduced
an artificial flipping method where two object positions would
be flipped at random for 20% of the objects. The reason for

TABLE II
TIMINGS FOR SINGLE POSITION UPDATE

Method # Objects Random (s) MI (s)
Multinomial 7 0.003 0.074

10 0.155 33.916
Guassian 7 0.013 0.090

10 0.173 33.651

doing this was we wanted to demonstrate the effectiveness
of using mutual information when the initial guesses are not
very accurate. We ran simulations with restricted numbers
of objects ranging from 4 to 10, and display the results
when only 7 and 10 objects are used. Since we found it
was computationally expensive to go through all the possible
combinations when using 9 or 10 objects, we introduced the
sampling method as discussed to reduce this complexity.

The multinomial distribution is initialised using the class
histogram calculated at the start.

The probability after looking at 7 and 10 view are 92%
and 94% respectively. This provides better results than just
using the euclidean distance of the Fourier descriptors as
show in Table 1. Also as shown in Figure 6, MI information
outperforms randomly selecting the next position to visit. The
figure shows how the probability of the correct permutation
changes with the number of views seen, and the percentage
of correct objects when the permutation with the highest
probability is chosen at each number of viewpoints.

In the Gaussian case, the class histogram is not used. Instead
we use a covariance matrix to calculate the likelihoods as
explained in Section VII-B. The probability after looking at 7
and 10 view are 99.2% and 99.8% respectively. This provides
much better results than just using the euclidean distance of
the Fourier descriptors and also outperforms the multinomial
distribution.

In Table II the average timings are given for choosing the
position to view next and updating the current distribution after
making an observation. For the mutual information, we used
20 samples per position. The timings are similar for both the
multinomial and Guassian distributions. As shown, the mutual
information increases the time taken over random selection,
although this could be reduced by using fewer samples while
trading off accuracy.

IX. CONCLUSION

We have presented a system which extracts Fourier de-
scriptors from ten different animal shapes to be used for
shape recognition. Initially recognition was performed using
the euclidean distance between the shapes. This resulted is an
accuracy of 80% with the system confusing the fish and the
tortoise shapes. We then set about using the Fourier descriptors
from the shapes in probability models. We showed that using
mutual information to actively select the next most uncertain
position in the sequence provides better results than randomly
selecting the next position. Both the models correctly identify
all the objects. This paper has shown that using probability
models for shape recognition, incorporating information about



Fig. 6. Results for the multinomial and Guassian distributions using sequences of 7 and 10 objects averaged over 100 splits of data

the current state of the system (MI) and actively selecting
which uncertain position to look at produces excellent results.
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