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ABSTRACT
A new MRF parameter estimation method is proposed,
based on the Population Monte Carlo algorithm. This
method is used to estimate MRF parameters which corre-
spond to the Bidirectional Reflectance Distribution Func-
tion of a material surface given its reconstructed surface
geometry, camera matrices and lighting data. The posterior
distributions on the MRF/BRDF parameters are then used
as features for material classification.
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1 Introduction

This paper proposes a new method for doing MRF param-
eter estimation on a lattice of random variables which en-
code the surface geometry of a stereo reconstructed surface.
This method for parameter estimation was inspired by [16],
where a MCMC approach is used to approximate the pos-
terior distribution on a MRF parameter set, after which the
parameters are used to classify the image by texture. We
use the MRF formulation for shape from shading devel-
oped in [11], [10], which describes a set of MRF potential
functions which allow a surface to be reconstructed given
probabilistic range data on surface points and known cam-
era matrices and lighting direction vectors. The method can
work for any reflectance model, and convergence results
using the Ward BRDF model using synthetic data are pre-
sented. We proceed to describe the Ward model, then the
MRF formulation for shape from shading, then the Popula-
tion Monte Carlo method [3], [7], [6]. Classification results
are presented using both the Ward model and the anistropic
Phong model of [1].

2 The Isotropic Gaussian Ward reflectance
model

This section describes the isotropic Ward BRDF model,
as expounded in [17]. If the angles of incident light are
(θi, φi) and reflected light are (θr, φr), then isotropic Ward

model is given by

ρbd,iso(θi, φi; θr, φr) =
ρd
π

+ ρs
exp (− tan2 δ/α2)
4πα2

√
cos θi cos θr

,

(1)

where ρd is the diffuse reflectance, ρs is the specular re-
flectance, α is the standard deviation of the surface slope,
and δ is the angle between the half vector h and the sur-
face normal n̂. The model is clearly symmetrical, and the
normalizing term ensures the correct energy balance. The
isotropic model may be extended to the anisotropic one if
it is assumed that the surface has different (uncorrelated)
roughnesses in perpendicular directions along the surface.
These roughnesses are denoted by αu and αv . The Ward
model function may be calculated using

ρbd(θi, φi; θr, φr) =
ρd
π

+

ρs
1

4παuαv
√

cos θi cos θr
exp

(
−2

h·u
αu

+ h·v
αv

1 + h · n̂

)
, (2)

where

h · u =
sin θr cos θr + sin θi cos θi

||−→h ||
, (3)

h · v =
sin θr sin θr + sin θi sin θi

||−→h ||
(4)

and

h · n̂ =
cos θr + cos θi
||−→h ||

, (5)

with

||−→h || =
[
2 + 2 sin θr sin θi(cosφr cosφi + sinφr sinφi)

+2 cos θr cos θi
] 1

2 . (6)

The following substitutions are used for vector calcula-
tions:

~h = k1 + k2, h = ~h

||~h||
, (7)

cos(θr) = k1 · n̂, cos(θi) = k2 · n̂. (8)

In the above equations k2 is the reflected ray direction
(away from the surface), k1 is the incident ray direction
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(away from the surface), u is a unit vector in the surface
plane, and v is a unit vector in the surface plane, perpen-
dicular to u. It is noted in [17] that there is some spectral
dependence between ρd and ρs, and that the normalization
factor 1

4πα2 loses some accuracy when α > 0.2.

3 Markov random field framework for
BRDF paremeter estimation

This section outlines the Markov random field (MRF)
framework which is used to estimate reflectance parame-
ters of stereo reconstructed surfaces. It may seem unnatu-
ral to estimate parametric probabilistic BRDF models us-
ing MRF parameter estimation, but it can be justified by
noting that since (uninterpolated) a disparity map always
consists of a set of discrete random variables which have
uncertainties associated with them, any stereo based 3D re-
construction of a surface is in fact the realization of a dis-
crete 2-D Markov Random Field, where the labels on the
image points correspond to the projected depths of those
points into the scene. This idea was stimulated by the pre-
vious research of [11] and [10], where the shape from shad-
ing problem are cast into a MRF framework. This led us to
hypothesize that the same reflectance parameters of the sur-
face can be estimated using the same MRF framework, by
treating a probabilistic surface reconstruction as a posterior
distribution on a MRF. We now describe this MRF formu-
lation.

Figure 1. This diagram illustrates the energy terms (square
nodes) on the triplets of random variables representing the labels
on corner vertex nodes (round nodes labeled xi). If a loopy belief
propagation approach is used to calculate the posterior distribu-
tion (as in [11]), the square nodes would represent factor nodes

connected to the variable nodes (round nodes).

The plane generated by the triplet of corner vertex

Figure 2. This diagram illustrates the energy terms (square
nodes) on the triplets of random variables representing the labels
on corner vertex nodes (round nodes labeled xi) as well as the
corresponding dependence of the corner vertex node labels xi on
the range data for each corner vertex node contained in zi. The
round nodes labeled zi are visible nodes giving range or depth

data.

nodes for each clique forms an angle with the incident light,
giving a reflectance value for the pixel, or for the image re-
gion which corresponds to that triangle on the surface. The
expected image intensity value, as perceived by the camera
depends on the reflectance function used. This is shown in
Fig. 3, where the assumption is made that the corner ver-
tex node labels correspond to discrete distances measured
perpendicularly from the image plane.

Next a Markov random field (MRF) is defined on this
set (lattice) of corner vertex nodes X, given the image
data Y and explicit range data Z (which may come from
a source such as a laser scanner or sparse surface recon-
struction). This MRF is used to derive a probability for the
depth or range of the surface at the location of the surface
corresponding to a particular corner vertex node:

p(X|Y,Z, θ) ∝∏
i,j,k
i<j<k

exp(−ψijk(xi, xj , xk, yijk, θ))
∏
i

exp(−ψi(xi, zi))

(9)

The energy of a particular set of corner vertex nodes (i, j, k)
in a clique taking on a particular set of labels (xi, xj , xk) is
taken to be

ψijk(xi, xj , xk, yijk, θ) =

|yijk − BRDF(i, j, k, xi, xj , xk, ~L,P, θ)|/σb

(10)

where the BRDF parameters are contained in θ, and yijk is
the pixel intensity (on a gray scale from 0 to 1) of the im-
age region contained by the three vertex nodes (usually one
pixel), and xi, xj , xk are the labels of corner vertex nodes
i, j, k. P contains the two camera projection matrices of
the two cameras in the stereo rig, and σb is a parameter
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Figure 3. A triangular plane is generated by the three points on
the surface, each corresponding to a label value for the site of one
of the corner vertex nodes surrounding the pixel. The normal to
the plane n̂ and the incident light source direction ~L are indicated.
The square region interior to four corner vertex nodes is a pixel

which affects the sharpness of the energy function. The po-
tential term ψi(xi, zi) encodes probabilistic range data on
the label xi at node i. An example of a workable potential
function for an affine camera is

ψi(xi, zi) = |zi − ui(xi)|/σr, (11)

where zi is the specified depth or range of the surface at
point i, and ui(xi) is the depth or range at surface point i
given the label of the corner vertex node xi at that point
on the surface. As before, σr is a parameter which affects
the sharpness of the function. Whether the point is given a
value because it lies on a known boundary or because we
have range data about the point, it is treated the same way.
The potential energy term ψi(xi, zi) in Eqn. 9 can be used
to incorporate such a constraint. In addition, the specifica-
tion of boundary conditions may resolve some of the am-
biguities, since there is generally a number of surfaces that
generate a particular intensity map under particular lighting
conditions [5]. The MRF formulation allows such bound-
ary conditions and range data to take on the form of either
hard or soft constraints.

BRDF(·) is the reflectance model, which returns the
expected intensity at the location described by the indices
i, j, k, given the light source, the surface and the camera in-
formation. The simplifying assumption that the camera is
affine gives the following equations for the partial deriva-
tives in the height (with respect to change in position in the
horizontal and vertical directions on the image):

p = ∂u/∂x and q = ∂u/∂y, (12)

where u represents the height of the surface, x and y are
orthogonal directions on the image plane. Assuming square
pixels and an overall scale of one unit per pixel, ∂x and
∂y are set to 1, and the calculated elevation difference on

opposite sides of a pixel is ∂u. With these assumptions, the
surface normal is calculated as

n̂ = (−p,−q, 1)/
√

(p2 + q2 + 1). (13)

If the BRDF under consideration is the simple Lambertian
reflectance model, then

BRDF(i, j, k, xi, xj , xk, ~L,P, θ) = |n̂ · ~L|, (14)

where the vector θ contains the BRDF parameter set (it is
empty in this case, since the Lambertian reflectance model
does not have any associated parameters). If the BRDF
model follows the Ward model, the parameters would be
θ = (ρs, ρd, α).

For a projective camera, the calculation of the local
surface normal becomes a task of extracting the 3-D loca-
tions of the triangulated points and calculating the normal
using the vector cross-product. Thus, if Zi, Zj , and Zk
are the 3-D locations in world coordinates of surface/image
points i, j, k, then

n̂ = (Zj − Zi)× (Zk − Zi)/||(Zj − Zi)× (Zk − Zi)||,
(15)

where “×” indicates the vector cross-product opera-
tion (it is also required that the normal points in the direc-
tion of the camera). “BRDF” is a function which returns
the intensity value given local surface geometry informa-
tion (the 3-D locations of the surface points corresponding
to the three corner vertex nodes of a particular clique). The
camera projection matrices P1 and P2 for the stereo pair
are contained in P.

4 MRF parameter estimation using the
Pseudolikelihood approximation

The task of parameter estimation, or of the evaluation of
the probability of a given labelling with a given set of pa-
rameters, requires the evaluation of a function of the form

p(f |θ) = Z(θ)−1 exp(−U(f, θ)) =
exp(−U(f, θ))∑
s∈F exp(−U(s, θ))

,

(16)

where f is the realization of the site labellings, and F
is the configuration space of all possible site labellings.
The problem with evaluating this probability is that Z(θ),
known as the partition function, is combinatorially difficult
to calculate. Much effort has gone into developing meth-
ods for approximating the partition function, as described
in the literature review.

One method for MRF parameter estimation, and for
bypassing the need to evaluate the partition function when
evaluating probabilities on lattice site labellings, is to use
the pseudolikelihood estimate, proposed in [2]. The condi-
tional probability per site on a graph is estimated using only
its immediate (Markov) neighbours. This is now expressed
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using a potential function UA(·). Note that the pseudo-
likelihood equals the true likelihood when all the labels are
independent. For a single site i (and neighbourhood) la-
belling,

p(fi|fNi , θ) =
exp(−UA(fi, fNi , θ))∑

fs∈L exp(−UA(fs, fNs , θ))
, (17)

where fi is the label on node i, Ni is the neighbourhood
system on node i, L is the set of possible labels, θ is the
set of MRF parameters, and S is the set of discrete sites on
the lattice. The pseudolikelihood for all the labels on the
lattice is

PL(f |θ) = log
∏
i∈S

p(fi|fNi , θ). (18)

This pseudolikelihood estimate is necessary to approximate

p(θ|f) = p(f |θ) p(θ)
p(f)

. (19)

If the pseudolikelihood estimate of p(f |θ) is available, and
if we assume uniform priors p(θ) and p(f), then we can
use

p(θ|f) = exp(PL(f |θ)), (20)

which immediately allows us to use Monte Carlo type tech-
niques to explore the distribution p(θ|f), and Maximum
Likelihood Estimation (MLE) and gradient descent meth-
ods to find its MAP value [9].

To calculate the pseudolikelihood of a BRDF label
set given the parameters θ, we define the potential function
UA(·) for node i to be

UAi (xi, xNi , θ) =
∑

j∈Ni,k∈Ni
k>j

ψijk(xi, xj , xk, yijk, θ),

(21)

where j, k ∈ Ni indicates that j and k are indices of nodes
neighbouring node i, and θ contains the BRDF parameters
(θ = (ρd, ρs, α), in the case of the Ward model). The func-
tion implicitly uses ~L (the lighting direction) and P which
contains the camera projection matrices. As potential func-
tions with the clique connectivity indicated in Fig. 2 are
being used, the potential term UA involves a summation of
four local clique potentials per corner vertex node.

The pseudolikelihood estimate of the parameters θ,
given a particular realization of the MRF, is expressed as

θ∗PL = arg max
θ
PL(f |θ). (22)

5 The theory of Population Monte Carlo

According to [3], early MCMC literature attempted to dis-
sociate itself from the literature on importance sampling,
even though both of these had in common the notion of

sampling from a proposal distribution other than the prior
distribution while arriving at the correct posterior distri-
bution by using normalization and reweighting. It was
only much later that MCMC and importance sampling were
combined (e.g. [12], [8]).

In our implementation, there is little difference be-
tween partitioned particle filtering (over a single time step)
and PMC. In [3], it is shown that the importance functions
per sample (as each sample may have its own importance
function) may depend in any way on the previous impor-
tance functions and sample distributions. This is because
the sample set is immediately reweighted to represent a
draw from the target distribution, at every iteration. The-
oretically, PPF applies the same importance function gn

(with resampling) in the sequence to all of the particles in
partition n. Suppose we want to construct a target distri-
bution %(·) using a MCMC sampler, where we can specify
the probability of a set of samples in terms of the product
of the probability of each sample individually:

%
⊗
n(θ1, ..., θn) =

n∏
i=1

%(θi). (23)

Here the distribution is on the space χn, whereas %(θi) is on
the space χ. PMC allows one to avoid the problem of cal-
culating the convergence of an MCMC sampler to the cor-
rect stationary distribution by using importance sampling
to correct at each time step for the bias introduced by the
proposal distribution.

To use this, each sample θti in the sample set θt =
(θt1, ..., θ

t
n), (each sample has been drawn from gti ) is

reweighted by

πti =
%(θti)
gti(θ

t
i)
, i = 1, ..., n, (24)

where gti is the proposal distribution for the simulation of
θti . This definition implies that estimators which take the
form

Jt =
1
n

n∑
i=1

πtih(θ
t
i) (25)

are unbiased estimators of E%[h(θ)] at every iteration t, for
every integrable function h(·). Assuming that the variances

var(πtih(θ
t
i)) (26)

exist for all 1 ≤ i ≤ N , i.e. that the proposals for gti have
heavier tails than %, then the variance decomposition rule
for J, namely

var(Jt) =
1
N2

N∑
i=1

var(πtih(θ
t
i)), (27)

implies that the importance-weighted terms are always un-
correlated.
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Since distributions % are often unscaled and unnor-
malized, one can instead use

πti ∝
%(θti)
gti(θ

t
i)
, i = 1, . . . , N. (28)

The weights, although now normalized, have caused the
distributions to lose their unbiasedness and variance de-
composition properties, although they still approximate the
true distributions.

As noted in [13], instead of updating the weights at
each iteration, it improves the representation of target dis-
tributions to resampleN values yti (with replacement) from
the sample set (θt1, ..., θ

t
N ) at each time step t, according to

the sample weights πti . This ameliorates the degeneracy
problem, where irrelevant samples are maintained and do
not help in representing the distribution compactly. The
new sample set (yt1, ..., y

t
N ) resulting from this resampling

operation is similar to an i.i.d. sample taken from the dis-
tribution %

⊗
n(θ1, ..., θN ).

The essential feature of the PMC sampler is that at
iteration t, N values are simulated from a proposal distri-
bution which depends itself on the N × (t − 1) previous
samples. There is almost no constraint on the dependen-
cies of the new importance distributions on the old ones
or on the previous samples. In [14], it is noted that in
the absence of repeated resampling operations at each it-
eration of the PMC sampler, the algorithm is equivalent to
Metropolis-Hastings sampling in the N dimensional space
χN (N is the number of samples in the sample set), which
converges to the target distribution %

⊗
n, (i.e. to the same

desired target distribution). It is also equivalent to N par-
allel Metropolis-Hastings samplers which accept or reject
each sample in the N dimensional sample set, (i.e. a par-
allel MCMC sampler), which converges to the target distri-
bution %

⊗
n.

The generic PMC method can be described (taken
from [4]) as follows:

• n=0: Initialize sample locations and probability
weights:

1. Generate (θ0i )1≤i≤N ∼ g0

2. Compute (π0
i )1≤i≤N = (p(θ0i )/g

0(θ0i ))1≤i≤N .

3. Resample sample set (θ0i , π
0
i )1≤i≤N , choosing

sample i with probability π0
i .

• For n > 0

1. Conditionally on previous θji and θji,new (j < n),
generate independently (θni )1≤i≤N ∼ gni

2. Compute (πni )1≤i≤N = (p(θni )/gni (θni ))1≤i≤N .

3. Resample sample set (θni , π
n
i )1≤i≤N , choosing

sample i with probability πni .

6 The softening of a probability density func-
tion

It is beneficial to use a sharpening/softening function on
the posterior distribution of a random variable if it is rep-
resented by a set of samples, especially when applying a
set of different cost functions to the particles at different
stages. When the resampling of these particles is done,
and if one particle has a very high probability, that par-
ticle will be sampled repeatedly, resulting in degeneracy.
This is especially likely when using probabilities based on
multiplying likelihoods over thousands of pixels/nodes. We
would rather maintain bad (low probability) samples for a
few more resampling iterations, in case they prove to be
good samples under some other energy function (a clique
potential over other corner vertex node triplets in the image
data in our case), or if there are other local maxima close
to some of the local minima. To do this we use importance
sampling for the same effect as simulated annealing, within
the PMC paradigm. The method used to soften our distri-
butions is

πnew
i ∝ (πold

i )l, (29)

i.e. for each sample, take the weight of the ith sample and
take it to the lth power. After all the weights have been ad-
justed in this way, the weights −→π new are normalized. Note
that with this softening algorithm, values of l < 1 soften
the distribution, while l > 1 sharpen it. The operation of
this algorithm on a pdf p(θ) can be written as

pnew(θ) = s(p(θ)). (30)

7 Overview of process for probabilistic dense
stereo reconstruction and MRF parameter
estimation

This section outlines the process we used to create a dense
probabilistic surface reconstruction, and for doing MRF
parameter estimation to estimate BRDF parameters. The
process can be divided into the following steps:

1. Capture stereo images A of calibration object
2. Capture stereo images B of scene under structured

lighting (checkerboard pattern)
3. Capture stereo images I of scene illuminated by white

light
4. Calculate and calibrate projection matrices of cameras

P in stereo pair using images A
5. Rectify images B giving images IR using calibrated

projection matrices P (and point correspondence data
for images A)

6. Do dense stereo correspondence on rectified images IR,
calculating disparity field X and probabilities (beliefs)
on this field b

7. Use probabilistic dense stereo correspondence data
X and b, along with image intensity information (images
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I), camera projection matrix data (calculated in 4), and
light source information to estimate MRF parameters,
using PMC, dynamically weighted MCMC, or multiple-
seed Levenberg- Marquardt algorithm.

To do step 6, we chose to use the accelerated Loopy
belief propagation dense stereo correspondence algorithm
due to Tappen [15], which propagates disparity infor-
mation quickly across the lattice. Our MRF estimation
of BRDF parameters allows us to use the final posterior
belief on each corner vertex node label, after the image
and pairwise clique interactions have been taken into
account, and the information has spread across the whole
disparity map. One way of including this in the pseu-
dolikelihood framework, is to convert the belief on the
label of any transformed corner vertex node back into a
potential function. For a single potential energy term,
p(x) = k1 exp(−UD(x)/T ). Therefore we convert each
probability vector b(xi) on the disparity label of each
corner vertex node into a potential term for that node:

UDi (xi, IR) = ψDi (xi) = −T log(b(xR1
r(i))/k1), (31)

where T is the temperature and k1 is a normalization con-
stant. This formulation permits the incorporation of prob-
abilistic information gained from LBP type dense stereo
correspondence algorithms about the likelihood of any la-
bel xR1

i in the rectified image IR1, into a potential energy
term, within the paradigm of Gibbs random field type en-
ergy interactions.

Note that the LBP algorithm for dense stereo corre-
spondence is calculated using the pair of rectified images
IR with the set of corner vertex nodes on the lattice of sites
in IR1, and not on the set of corner vertex nodes for the
first unrectified image I1. A pseudolikelihood which in-
corporates this dense stereo-based probability through the
potential energy as in Eqn. 31 is

PL(X|θ) = log
∏
i∈S

p(xi|xNi , θ)

= log
∏
i∈S

exp(−UAi (xi, xNi , θ)− UDi (xi, IR))∑
s∈L exp(−UAi (s, xNi , θ)− UDi (s, IR))

. (32)

For notational convenience we also write the function

ePL(X|θ) = exp(PL(X|θ))

=
∏
i∈S

exp(−UAi (xi, xNi , θ)− UDi (xi, IR))∑
s∈L exp(−UAi (s, xNi , θ)− UDi (s, IR))

. (33)

8 Pseudolikelihoods

Now that the third pseudolikelihood function PL has been
defined, the importance function of Eqn. 34 can be refor-
mulated:

G(θ|X) = s(ePL(X|θ)), (34)

remembering that we are using p(θ|X) = exp(PL(X|θ)),
since there are uniform priors on X and θ, and where s(·) is
the softening function, as described previously (Eqn. 30).
This is the importance function used for the PMC based
MRF parameter estimation. As with the previous pseudo-
likelihood functions, one can construct importance func-
tions Gn based on iteration over a certain part the lattice,
using

ePLn(X|θ) =
∏
i∈Sn

p(xi|xNi , θ), (35)

where Sn is the nth subset of the sites on the lattice, for ex-
ample Sn = {n, n+k, n+2k, . . . }, where k is the number
of subsets into which the surface is partitioned. This func-
tion can be softened, giving

Gn(θ|X) = s(ePLn(X|θ)). (36)

The calculation of correctly weighted samples at ev-
ery time step can be avoided by using an algorithm that
calculates the correctly weighted sample set whenever it is
required, but maintains a set of weighted samples which al-
ways represents the uniform distribution, retaining the sam-
ples which are in positions considered to be important. This
is the PMC algorithm used in this thesis:

8.1 Population Monte Carlo algorithm

n=0: Initialize sample locations and probability weights:
1. Generate samples (a0

i )1≤i≤N ∼ G0

2. Compute weights (c0i )1≤i≤N = (1/G0(a0
i |X))1≤i≤N

3. Normalize the weights c0

4. If the correct posterior distribution ePL(X|θ) is needed:
5. Compute

(π0
i )1≤i≤N = (ePL(X|a0

i )/G
0(a0

i |X))1≤i≤N
6. {−→θ 0,−→π 0} = resampleParticles({−→a 0,−→π 0})
7. end.
For n > 0
1. Generate samples

(ani )1≤i≤N ∼ Gn({−→a n−1,−→c n−1}|X)
2. Compute weights (cni )1≤i≤N = (1/Gn(ani |X))1≤i≤N
3. Normalize the weights cn

4. If the correct posterior distribution ePL(X|θ) is needed:
5. Compute

(πni )1≤i≤N = (ePL(X|ani )/Gn(ani |X))1≤i≤N
6. {−→θ n,−→π n} = resampleParticles({−→a n,−→π n})
7. end.

It is necessary to specify how the sampling is done
at step 1 in each case. When n = 0, at step 1, which
reads “(a0

i )1≤i≤N ∼ G0”, the samples are generated in the
following way:

1. Generate an evenly spaced set of samples
(u0
i )(1≤i≤N) over the parameter space to repre-

sent the uniform distribution in R3, and set the
weights c0i = G0(u0

i |X), (1 ≤ i ≤ N)
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2. {−→a 0,−→c 0} = resampleParticles({−→u 0,−→c 0}, σ0)

The second case step 1 (n > 0), which reads “Generate
samples (ani )1≤i≤N ∼ Gn({−→a n−1,−→c n−1}|X)”, is per-
formed in the following way:

1. Reweight each of the samples an−1
i , for 1 ≤ i ≤ N ,

according to

wi = cn−1
i Gn(an−1

i |X) (37)

2. {−→a n,−→c n} = resampleParticles({−→a n−1,−→w }, σn).

As before, the additive Gaussian noise at the resam-
pling stage is parameterized by σn, which is the standard
deviation of the noise, decreasing at each iteration of the
PMC algorithm.

Note that each sample θni contains the information for
the BRDF parameters. P (both camera projection matri-
ces), and ~L (the light source direction), are used implicitly
in the pseudolikelihood calculations. P has been calculated
through calibration algorithms using a calibration checker-
board, and ~L is estimated from the scene geometry (the
projector is positioned midway between the two cameras).

In our experiments, the standard deviation of the
additive Gaussian noise for the resampling operation
(resampleParticles(·, σn)) is initialized with σ0 = 0.07,
and decreases linearly over the PMC iterations until finally
σT = 0.

9 BRDF parameter estimation on synthetic
data

9.1 Convergence results for the PMC method

The posterior distribution of Eqn. 33 for a range of syn-
thetic surfaces was explored as the target distribution %(·)
using the PMC method. The methodology for gathering
synthetic data for the performance analysis of the PMC
algorithm follows:
1. For n=1,. . . ,N
2. Generate random surface and virtual range disparity

field X consisting of the possible labels for the range
of disparity values for each corner vertex node in the
image, and S, the labelling of X which corresponds to
the true surface

3. Generate random BRDF parameter vector~bn, and
render intensity map I1 of true surface (S) given light
source ~L, camera data P, and reflectance model and
parameters~bn,

4. Run PMC algorithm with 64,125,1000 samples for 20
iterations, using Eqn. 33 as the target distribution,
storing each sample set (−→θ ,−→π )n,i at each iteration i

5. end(1).
6. The MAP sample is found by choosing the sample θ

with the highest probability weight π at any iteration
i. Thedistance of the MAP sample to the true synthetic
BRDF parameter set is stored for every iteration. The

averages of these distances over 100 runs are recorded
in Tables 1 to 4, per PMC iteration, in the columns
labeled “MAP dist”.

7. The variance of the sample set weights −→π n,i is
calculated for each iteration, and averaged over the
number of trial runs (N=100). These are also recorded
in Tables 1 and 2,per PMC iteration,
in the columns labelled “var”.

The variance of the weights in a weighted sample set
is an indication of the number of effective samples, and
is used to show that the samples are not being wasted in
regions of the target distribution of low probability. If
the samples were thus distributed, the sample variance
would be higher. A sample variance which decreases over
successive PMC iterations thus indicates that the PMC
algorithm is finding the local maxima in the distribution (if
such local maxima exist).

It is seen in each of these tables that the average Eu-
clidean distance between the true BRDF parameters used
to generate each surface image and the MAP sample of the
sample set (indicated in columns by “MAP dist”, which
indicates the Euclidean distance between the true sample
and the MAP sample) decreases as the PMC algorithm pro-
ceeds through each iteration. The sample variances (indi-
cated in columns by “var”) also decrease as the PMC al-
gorithm proceeds through each iteration. Note that the el-
ements of Tables 1 to 4 are average values over 100 runs.
These results are presented in table form since there are
too many variables to easily distinguish graphically plotted
data.

numLabels 10 10 10 10 10 10
numSamples 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var
iters (×10−6 ) (×10−6 ) (×10−6 )

1 0.3439 18.2 0.4054 38.2 0.489 671
3 0.1872 0.887 0.355 31.79 0.4643 104.1
5 0.1829 0.4873 0.3318 17.94 0.4664 31.86
7 0.1595 0.4411 0.3122 92.38 0.4647 49.42
9 0.1531 0.3693 0.306 90.41 0.435 60.79
11 0.1578 0.3439 0.2875 39.84 0.4389 20.02
13 0.1446 0.3042 0.2752 41.95 0.4262 20.47
15 0.1432 0.2662 0.2731 48.82 0.4332 22.6
17 0.1367 0.2577 0.2765 30.33 0.4325 10.96
20 0.1324 0.1509 0.2831 21.13 0.4231 2.829

Table 1. Convergence results of the PMC algorithm when us-
ing the isotropic Ward reflectance model. Average statistics are
shown over the 20 iterations of the PMC algorithm. The image
size is 100x100 pixels. The table is populated with average val-

ues over 100 runs.

10 Classification using stereo images of real
surfaces

To test the PMC evolved sample sets as features for sur-
face classification, reconstructions of 48 material surface
instances were captured, and divided into 12 classes, shown
in Figs 4, 5, 6. For the classification of surfaces through the
comparison of their BRDFs (represented by sample sets),
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numLabels 20 20 20 20 20 20
numSamples 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var
iters (×10−6 ) (×10−6 ) (×10−6 )

1 0.2863 3.609 0.4547 343.1 0.5139 507.7
3 0.1356 0.2929 0.3955 61.44 0.4851 91.51
5 0.1266 0.148 0.362 54.08 0.4574 47.1
7 0.1142 0.09438 0.3217 39.96 0.4475 39.58
9 0.1221 0.07107 0.3243 36.71 0.4413 33.72
11 0.1109 0.05896 0.3187 34.53 0.4268 14.03
13 0.1109 0.04885 0.3066 27.7 0.4211 26.8
15 0.1026 0.03878 0.3111 22.42 0.4192 25.01
17 0.1025 0.06599 0.3042 30.07 0.4007 15.97
20 0.1043 0.01832 0.2979 16.03 0.4029 1.434

Table 2. Convergence results of the PMC algorithm when us-
ing the isotropic Ward reflectance model. Average statistics are
shown over the 20 iterations of the PMC algorithm. The image
size is 100x100 pixels. The table is populated with average val-

ues over 100 runs.

numLabels 30 30 30 30 30 30
numSamples 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var
iters (×10−6 ) (×10−6 ) (×10−6 )

1 0.3525 13.2 0.4325 17.7 0.5345 1685
3 0.2024 0.5346 0.4254 24.9 0.5205 49.54
5 0.166 0.4922 0.4129 9.79 0.5344 62.12
7 0.1585 0.3615 0.3994 5.312 0.5183 44.23
9 0.1363 0.4002 0.3966 8.043 0.49 47.86
11 0.1383 0.3318 0.3995 6.799 0.4934 30.02
13 0.1424 0.3007 0.3982 4.16 0.4899 41.57
15 0.1354 0.2186 0.3962 5.621 0.4808 27.12
17 0.1178 0.1805 0.3984 4.038 0.4811 40.7
20 0.1188 0.1157 0.3984 0.0005852 0.4815 3.233

Table 3. Convergence results of the PMC algorithm when us-
ing the isotropic Ward reflectance model. Average statistics are
shown over the 20 iterations of the PMC algorithm. The image
size is 100x100 pixels. The table is populated with average val-

ues over 100 runs.

it is necessary to define distance measures between prob-
ability density functions. In particular, it is necessary to
define measures between weighted sets of samples, since
the posterior distributions on the BRDFs are represented by
weighted sample sets, which are calculated using the PMC
algorithm.

10.1 Comparing sample sets

The analytic expressions for calculating some of these
probabilistic distances, if the samples representing the pdfs
are assumed to be drawn from normal distributions, are
shown in Table 5. Although the sample sets representing
the posterior distributions for the parametric BRDF models
that are calculated for the material and froth surfaces are
not necessarily normally distributed, they are close enough
to normal to support the use of these analytic expressions
for probabilistic distance calculation. Thus the means and
variances of the evolved weighted sample sets, calculated
using the PMC method, are estimated and substituted into
the equations in Fig. 5.

In Tables 6 to 9, classification results are given using
the “Miss”, “WNN” and “NN1” error classification statis-
tics. The “Miss” statistic is a count of the number of times
in the similarity matrix (iterating once over the entries for
each material) that one of the extra-class materials has a

numLabels 40 40 40 40 40 40
numSamples 1000 1000 125 125 64 64

PMC MAP dist var MAP dist var MAP dist var
iters (×10−6 ) (×10−6 ) (×10−6 )

1 0.3622 4.176 0.4881 30.34 0.4715 3690
3 0.1926 1.15 0.4788 18.7 0.4628 91.95
5 0.1605 0.7327 0.473 12.08 0.4274 62.59
7 0.1353 0.5818 0.4613 3.844 0.4241 69.01
9 0.138 0.463 0.4576 7.981 0.4171 61.87
11 0.1302 0.4178 0.4618 6.183 0.4063 32.29
13 0.1281 0.3804 0.4667 9.817 0.393 34.92
15 0.1327 0.3284 0.4662 8.779 0.4064 37.01
17 0.1157 0.2744 0.4694 5.663 0.3964 32.38
20 0.1335 0.2167 0.467 0.001259 0.3942 7.014

Table 4. Convergence results of the PMC algorithm when us-
ing the isotropic Ward reflectance model. Average statistics are
shown over the 20 iterations of the PMC algorithm. The image
size is 100x100 pixels. The table is populated with average val-

ues over 100 runs.

C JC(p1, p2) = 1
2
α1α2(µ1 − µ2)T [α1Σ1 + α2Σ2]−1(µ1 − µ2)

+ 1
2

log |α1Σ1+α2Σ2|
|Σ1|α1 |Σ2|α2

B JB(p1, p2) = 1
8
(µ1 − µ2)T [ 1

2
(Σ1 + Σ2)]−1(µ1 − µ2)

+ 1
2

log
1
2 |Σ1+Σ2|

|Σ1|1/2|Σ2|1/2

KL JR(p1||p2) = 1
2
(µ1 − µ2)TΣ−1

2 (µ1 − µ2) + 1
2

log Σ2
Σ1

+
1
2

tr[Σ1Σ−1
2 − Id]

SKL JD(p1, p2) = 1
2
(µ1 − µ2)T (Σ−1

1 + Σ−1
2 )(µ1 − µ2)

+ 1
2

tr[Σ−1
1 Σ2 + Σ−1

2 Σ1 − 2Id]

PF JP (p1, p2) = [(2π)d|2Σ1|]−1/2 + [(2π)d|2Σ2|]−1/2

−2[(2π)d]|Σ1 + Σ2|]−1/2·
exp{− 1

2
(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)}

M JM (p1, p2) = (µ1 − µ2)TΣ(µ1 − µ2)

Table 5. Some analytical expressions for probabilistic dis-
tances between Gaussian probability density functions, where
0 ≤ α1, α2 ≤ 1 and α1 + α2 = 1. |Σ| indicates the determinant

of Σ. Id is the identity matrix.

similarity coefficient with the current material that is higher
than the lowest similarity coefficient among the intra-class
members of the current material. The “WNN” statistic,
which is an abbreviation for “Worst Nearest Neighbour”,
indicates the number of cases out of the 48 surfaces where
there is some extra-class material having a higher similarity
(lower probabilistic distance) to the material than the dis-
tance from the current material to any one of its intra-class
materials. The “NN1” statistic is similar to this: it indicates
the number of materials for which the best match (near-
est neighbour) is an extra-class match and is better than all
intra-class matches. The “NN1” statistic was used for clas-
sifiability testing in [18].

11 Conclusion

The PMC algorithm for MRF parameter estimation has
been shown to work, and has reasonable convergence be-
haviour to correct BRDF parameters when tested in a
BRDF parameter estimation setting, in the case of synthetic
data. The posterior distributions on BRDF parameters were
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C B KL SKL PF
Miss 157 155 134 119 198
WNN 39 38 37 37 47
NN1 22 22 19 15 26

Table 6. Classification error statistics for the 48 surfaces, us-
ing the anisotropic Phong reflectance model with PMC developed
particle sets. The statistics are shown for the Chernoff distance
(labelled C, with α1 arbitrarily set to 0.7), the Bhattacharyya dis-
tance (B), the Kullback-Leibler Divergence (KL), the Symmetric

KL Divergence (SKL), and Patrick-Fisher distance (PF).

M MAP EMD LM512
Miss 160 174 161 412
WNN 38 39 37 48
NN1 24 25 23 38

Table 7. Classification error statistics for the 48 surfaces, us-
ing the anisotropic Phong reflectance model with PMC developed
particle sets. The statistics are shown for the Mahalanobis dis-
tance (M), Euclidean distance between the MAP sample in each
sample set (MAP), the Earth Mover’s Distance (EMD) and classi-
fication based on the MAP sample obtained after the final iteration
of the PMC method. Also included in the last column, are results
using the distances between the best results of multiple-seed LM
iterations with 512 seeds, evenly spaced on the parameter space.

shown to be reasonably good features when used as fea-
tures in a classification framework.
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