Texture based classification of images using frequency estimated pairwise
MREF joint distributions on site labels from wavelet decomposed images

Markus Louw

Fred Nicolls

Department of Electrical Engineering
University of Cape Town, South Africa

markus.louw@gmail.com

Abstract

In this paper we demonstrate the efficacy of using joint proba-
bilities on the values (pixel intensities/wavelet coefficients) for
neighbouring sites (pixels/spatially neighbouring wavelet coef-
ficients), to classify images based on texture. The classification
capacity for this type of joint distribution, used as a feature,
is tested using a first nearest neighbour (NN1) method, which
counts the number of errors when comparing the labeled texture
to the label calculated by assigning the texture to the class of its
nearest neighbour, calculated using our method. We compare
our classification results to another method based on histogram
comparison. Our classification methodology is simple, general,
extensible and fast to calculate.

1. Introduction and Literature Review

There has been a number of attempts at image texture classi-
fication in the past, many of which use Markov Random Field
parameter estimation to extract texture based features. In [5],
images are segmented into regions of different textures by doing
a multispectral Karhunen-Louve expansion based factorization.
Parameters on the image regions are estimated using a Gauss
Markov Random Field (MRF) model. Segmentation is done by
detecting texture boundaries, which exist when the MRF tex-
ture parameter changes too much after which segmentation is
done on the image from within the MRF parameter space. In
[7], image texture patterns are specified through MRF param-
eter estimation. The MRF parameter for textures are found
through MCMC sampling. The use of these MRF parameters
as texture features is explored using a nearest linear combina-
tion (NLC) classifier. In [12], a method is found for comparing
3D volumetric MRI data using texture. The data is assumed to
be modeled by a Gaussian MRF. Distances between the texture
classes using the Kullback Leibler divergence (KLD) are found
elegantly by deriving a closed form expression for the probabil-
ity of data given class labels using sparse symmetric block cir-
culant matrices, calculated using a 3D FFT. Wavelet signal and
image decomposition was introduced in [8], and was soon used
for image texture classification and image retrieval. A com-
parison of wavelets for texture based image retrieval was done
in [16], where it was found that Gabor wavelets gave slightly
better classification than orthogonal and biorthogonal wavelets,
at a much greater computational cost. Our work also resem-
bles that of [4], in which the marginal distributions of wavelet
coefficients are modeled with a generalized Gaussian density
(GGD). Textures are then compared by measuring the KLD
between Gaussian distribution parameter sets obtained by fit-
ting Gaussian models to histogrammed wavelet subband coeffi-
cients. The spatial interactions between pixels in an image are

therefore modeled implicitly through the wavelet decomposi-
tion. More recently in [6], a texture segmentation method which
combines morphological operators with wavelet decomposition
is developed, with good segmentation results. The method we
have developed, in contrast to the previous methods, models
the probabilistic joint interactions between pixels and between
wavelet coefficients explicitly (i.e. not through a parameterized
MREF potential energy interaction). A joint distribution for pair-
wise neighbouring pixels or wavelet subband coefficients is de-
rived, which allows us to use the many probabilistic distances
that are available, for classification. We prove the classification
power of these joint distributions used as features using a first-
nearest-neighbour (NN1) classification scheme, where an im-
age is assigned to the class of the image which it most closely
resembles. Classification errors are counted for each data set
used. We also test the joint pixel/coefficient probabilities for use
as features using our worst-nearest-neighbour “WNN statistic”
(described later), which is more rigorous than the NN1 statistic.
Our method does not require the usual estimation of MRF pa-
rameters (which is known to be generally time consuming and
inaccurate), and is therefore faster and not prone to classifica-
tion errors resulting from bad MRF parameter fitting.

2. Data Sets

The data sets we use to compare our algorithm are of froth im-
ages taken from video feeds of flotation cells. There are three
data sets (samples shown in Figs. 1, 2, 3), and in each data set
the froth images have been grouped into different classes. The
froths from the first data set contains classes of very different
froths, where in some of the classes there is camera blurring.
The second data set consists of froth classes where the froths
are different, but there is no camera blurring. The third data
set consists of froth surfaces which are only slightly different.
We would expect any classification algorithm, including ours,
to perform better on the first two data sets than on the third one.

3. Histogram based probabilistic inter-class
distance

We can form an intensity histogram for each colour channel in
the image by counting the number of pixels in the image Y that
have a certain intensity level [. The equation for the red bang
follows:

Hr(Y,1) =) I(Yr(i) =), $))

=1

where I() is the indicator function which returns 1 when the
argument is true.



Figure 1: Four froth surface images from the first set of froth
classes. Each image belongs to a different class.

Figure 2: Four froth surface images from the second set of froth
classes. Each image belongs to a different class.

4. MRF model for pixels on a lattice

If Y is the image data, X is the set of random variables on the
image lattice S, and xi is the label on a particular site/node, and
if the Markov neighbourhood of site i is A/(4), then the usual
MRF model for pixel labels on a lattice is expressed simply as

()X, Y) = p(xi|zsens, Yi) ()

i.e. the probability of a site i having label xi is dependent only
on the labels of its Markov neighbours (N'(i)) and its image
pixel. Since we are not using Gibbs random field style potential
energies, we do not need to specify energy terms of any kind.
We do however assume that the same joint distribution between
any neighbouring pair of pixels/sites is the same over the whole
image, i.e.

p(zi,z;) = p(xj,z:)Vi € S, 5 € N(3). 3)

The equation above implicitly assumes an isotropic pdf, i.e. the
joint probability of neighbouring vertical pixels is the same as

Figure 3: Four froth surface images from the third set of froth
classes. Each image belongs to a different class.

that of neighbouring horizontal pixels. This allows us to es-
timate the joint probability through a histogramming method.
In many MRF optimization problems ([13],[14]), it is assumed
that the joint distribution given two random variables on a lattice
applies to all pairs of random variables on the lattice (and any
pair of pixel labels in the image data is a sample from this joint
distribution). These methods all specify the MRF on a lattice
via parametric energy functions. However, in [10] it is noted
that such a joint density may be approximated explicitly using
a frequentist approach (i.e. an occurrence counting methodol-
ogy). We have adapted this approach via a histogramming step.

5. Joint probabilities of neighbouring pixels

Figure 4: Joint probability distribution of discretized site values
done on a wavelet decomposed images (left). The distribution
is blurred with a Gaussian kernel, and renormalized (right).

First we form a histogram of the neighbouring pixel inten-
sities. Since the intensity range is from 0..255, the histogram
has dimensions 256 x 256. The histogram for the red channel



Figure 5: A froth surface image.

is formed as follows:

Hr(Yr, D) =) Y I(Yr() =1, Yr()j) = l2)

i=1jEN(4)
Viq,l2 € (0..255), (4)

where in the above algorithm, I(, ) is a logical AND function
which returns 1 when both its arguments are true, and returns
0 otherwise, and N is the number of sites (pixels) in the image.
Algorithmically this is done in the following way:

1. Initialize all Hr (Y r,l1,12) =0
2. Forly,l2 =0, ..,255

3. Fori=1.N

4. Forje N(3)

5. if j > ¢ (ordering prevents double counting)
6. L = YR(Z)

7. lo =Yr(j)

8. HR(YR,ll,lg) :HR(YR,ll,l2)+1
9. end(5)

10.  end(4)

11. end(3)

12. end(2).

After this we can construct a joint distribution by normaliz-
ing the histogram:

p(li,le) = k- H(l1,12) (5)

A visualization of such a probability distribution is shown in
Fig. 4, left. It is useful to smooth the probability distribution
before using the distance measures in Table 1, to compensate
for measurement noise in the image capturing process, and to
compensate for having too few data points to populate the his-
togram/joint probability distribution. Any blurring kernel can
be used, provided the distribution is normalized after the opera-
tion.

6. Image wavelet decomposition and
wavelet coefficient discretization
A wavelet decomposition [8] generates approximation and de-

tail coefficients: these are continuous valued and may be neg-
ative. To use our histogramming approach for estimating joint

probabilities between approximation and detail coefficients be-
tween neighbouring sites (the sites occur in subbands), it is nec-
essary to discretize (bucket) the coefficient values. Any parti-
tioning of the space in which the coefficients exist is acceptable.
We divided the space into 256 evenly spaced partitions over the
range between the minimum and maximum coefficient values
over all the images in each data set (this allows us to use the
same algorithm on 256 level grayscale images, without apply-
ing any wavelet decomposition). An example of the wavelet
decomposition of the image shown in Fig. 5 using the biorthog-
onal wavelet is shown in Fig. 6. Any set of wavelet kernels will
suffice.

Figure 6: Wavelet decomposition of froth surface image.

Bhattacharyya: | Jp(p1,p2) = —log{ [ [p1(X)p2(X)]'?dX}
Matusita: J'(p1,p2) = { [ [VP1(X) — V/p2(X)]/2d X} 12
Patrick-Fisher: | Jp(p1,p2) = {[, [p1(X)m1 — p2(X)mo]?d X }'/?
Kolmogorov: Jr (p1,p2) = [ [P (X)m1 — pa(X)ma]dX

Inner product: | Je(p1,p2) = [ [p1(X)m2(X)[dX

Table 1: A list of distances between probability density func-
tions, taken from [17], where 0 < a1, a2 < land a1 +as = 1.
m1 and 7o are the prior probabilities on the distributions.

DS | JE | Jh | J% | J% | inner prod
WNN | 1T | 4 | 4 | 4 | 4 4
NNI | 1 1 1 1 1 1
WNN | 2 | 18 | 18 | 18 | 18 18
NNI | 2 | 7 |10 7 |9 10
WNN | 3 |12 ] 16 | 13 | I5 17
NNI | 3 | 2 | 6| 2 | 6 6

Table 2: Classification results using pdfs derived by normaliz-
ing colour pixel intensity histograms (no joint distributions, no
wavelet decomposition). DS indicates the data set used.



DS [ J& [ Jh T J% [ J% T inner prod
WNN|[ 1] 0] O 0|0 0
NNI [ 1 ] 0| O 0| 0 0
WNN | 2 |17 |19 | 17 | 17 18
NNI | 2 | 7 | 8 7 7 9
WNN | 3 | 11 | 12 | 11 | 10 10
NNT | 3 | 2 1 2 2 1

DS [ J& [ Jh T J% [ J% T inner prod
WNN| 1| 49 2 [0 4
NNI | 1 1 1 0 [0 1
WNN | 2 [ 20 [ 20 | 20 | 19 20
NNI | 2 |12 |15 | 12 | 13 12
WNN| 3 | 15| 19| 14 | 16 19
NNT | 3 | 4 | 10 | 4 | 7 5

Table 3: Classification results using joint pdfs on neighbouring
pixel intensities (no wavelet decomposition). DS indicates the
data set used.

Table 5: Classification results using joint pdfs of discretized
neighbouring site values, using all subband coefficients (1st or-
der wavelet decomposition). DS indicates the data set used.

DS | JE [ J& T J 1 J& T inner prod
WNN 1 0 0 0 0 0
NN1 1 0 0 0 0 0
WNN | 2 17 | 18 17 17 18
NN1 2 7 8 7 7 7
WNN | 3 11 11 11 11 10
NN1 3 2 1 2 1 1

DS [ J& [ Jh T J% [ J% T inner prod
WNN 1 0 0 0 0 0
NNI1 1 0 0 0 0 0
WNN 2 21 21 21 20 21
NNI1 2 7 6 7 9 8
WNN 3 15 14 15 11 12
NNI1 3 2 1 2 3 2

Table 4: Classification results using joint pdfs of discretized
neighbouring site values, using approximation coefficients only
(1st order wavelet decomposition). DS indicates the data set
used.

7. Probabilistic distances

There are many probabilistic distances between probability
functions which may be used to compare their similarity.
These include the Chernoff [3], Bhattacharyya [2], Matusita
[9], Patrick-Fisher [11], Kolmogorov [1] distances, and the
Kullback-Leibler and symmetric Kullback-Leibler divergences
[15]. Some of the analytical expressions are given in Table 1.
Given these expressions for probabilistic distance between two
pdfs, one can measure the distances between any two (sets of)
joint probability distributions. If froth surface #1 has a pairwise
pixel joint pdf of pi1(l1,l2), and if froth surface #2 has a pair-
wise pixel joint pdf of p2(l1,l2), then the probability distances
in Table 1 can be calculated by discrete summation. For exam-
ple the Bhattacharyya distance has the summation

Tp(p1,p2) = —log(D_ [pr(ly, l2)p2(la, 12)]/?). (6)

l1,l2

The classification results for orders of wavelet decompositions
from 1 to 3 are done, and we report on the results from two dif-
ferent distance measures for each order of decomposition. The
first, J*, uses only the distances calculated on the discretized
approximation coefficients. The distances J2 use the distance
calculated using only the discretized coefficients from the 2nd
subband; J? and J* are the distances calculated using only 3rd
and 4th subbands respectively. We then define the total proba-
bilistic distance between two wavelet decomposed images, us-
ing all 4 subbands (1 approximation and 3 detail), as

JE =0+ 24+ 73+ g% %)

8. Classification Results

We tested the algorithm on three sets of real data: the first com-
prises 28 froth images taken from 7 classes, where some of the
images are blurry due to bad camera focussing or where there

Table 6: Classification results using joint pdfs of discretized
neighbouring site values, using all subband coefficients (J7 )
(2nd order wavelet decomposition). DS indicates the data set
used.

are horizontal striping artifacts. The second data set consists of
24 images of very different froth types, divided into 6 classes.
The third data set consists of 11 classes with three images per
class of the same froth type, where the froth is in different states
(each state corresponds to a class). We expect the third data
set to have the worst classification results since the froth has
similar appearance across operating states. Nearest neighbour
classification results when using the probability distances us-
ing only the probability distributions derived from histogram-
ming are shown in Table 2. Classification results using each of
the probability distances operating on the joint distributions of
Eqn. 5 are shown in Tables 2 to 7. To show the relative ef-
fect of conducting a wavelet decomposition, we include results
of the probability distances calculated using the coefficients on
the wavelet decompositions. In Tables 2 to 7, the NN1 statistic
counts the number of times, for each image in each class, that
the probabilistic distance to an extra-class image is less than
all intra class distances (i.e. an erroneous classification has oc-
curred). The WNN statistic counts the number of times for each
image in each class, where the probabilistic distance to an extra
class image is less than the furthest intra class distance. The
WNN statistic is therefore the more rigorous of the two classi-
fiability indicators (NN1 and WNN), and has correspondingly
higher numbers for erroneous classification in the tables than
the NN statistic. A score of zero in any of the tables is good
since it represents the notion of zero classification errors.

9. Discussion

From the results in the previous section it is clear that this is a
good classification method for froth surfaces, and outperforms
the NN1 and NNE classification methods operating on pixel in-
tensity probabilities only (i.e. when no joint pdfs are consid-
ered). The joint probability formulation implicitly takes into
account high or low frequency pixel intensity changes across
images, which will allow surfaces with many tiny bubbles to



DS [ J& [ Jh T J% [ J% T inner prod
WNN | 1 1 7 1 3 0
NNI | 1 | 0 | 2 0| 0 0
WNN | 2 |17 | 19 | 17 | 18 17
NNI | 2 | 7 | 10 | 8 8 9
WNN | 3 | 16 | 20 | 16 | 17 16
NNT | 3 | 3 | 12 | 4 6 4

Table 7: Classification results using joint pdfs of discretized
neighbouring site values, using approximation coefficients only
(2nd order wavelet decomposition). DS indicates the data set
used.

have different appearances to surfaces with few large bubbles to
be easily separated using this method. Interestingly, the incor-
poration of wavelet decomposition coefficients appearing in the
detail subbands does not appear to improve the classification re-
sults. We believe that wavelet decomposition should neverthe-
less be incorporated into this methodology, since with very high
resolution images, the joint distribution across pixels would be
prone to super-fine scale froth surface anomalies. In addition
the approximation coefficients (when used without the detail co-
efficients), improve the classification results, in our algorithm.

10. Conclusion

Using probabilistic distances such as the Bhattacharyya dis-
tance to find distances between images based on the joint prob-
abilities between neighbouring pixels appears to be a good
method for classification. Decomposing the images first using
wavelets leads to better classification performance, although no
classification power is added by incorporating probabilistic dis-
tance between joint distributions on the detail subband coeffi-
cients: only the approximation coefficients have benefitted the
classification, in our setting.
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