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Abstract

This paper describes an approximately expectation-
maximization (EM) formulation of a homographical iterative
closest point registration approach (henceforth HICP). We
show that such an EM approach allows the algorithm to
converge faster, and more robustly in the presence of noise.
Although this algorithm can register points transformed by a
more general set of linear transformations than the original
Iterative Closest Point (ICP) algorithm, it is only appropriate
for use on point sets which are related by a homographical
transformation, e.g. images taken of a planar scene from
different angles, or images taken of a general scene by a
stationary pan-tilt-zoom camera. The algorithm is tested on
real and synthetic data.

1. Introduction
The Iterative Closest Point Algorithm, [2], aligns point sets by
matching each point in the model point set to the closest cor-
responding point in the scene point set and finding the best ro-
tation to apply to the model point set, to minimize the sum of
squared distance errors between each model point and its cor-
responding scene point. This process is then repeated until no
improvement is made. An expectation maximization approach
for the ICP algorithm was then developed in [5]. Later, the ho-
mographical iterative closest point algorithm was developed in
[1]. Although the authors used it to register free form curves, it
was ostensibly extensible to registering point sets.

2. Iterative closest point algorithms
In the following three subsections, we describe the iterative
closest point algorithm, the homographical iterative closest
point algorithm, and the EM-ICP algorithm. Henceforth, we
shall talk about a scene point set xs which has N points and a
model point set xm, which has M points, each stored in matrix
form:

xs =
(

x1
s . . .xi

s . . .xN
s

)T
.

In the algorithms discussed here, we will always attempt to
register the model point set to the scene point set, i.e. the scene
point set is static, while different transformations are applied to
the model point set.

2.1. Formulation of the Iterative Closest Point algorithm
(ICP)

The singular value decomposition (SVD) implementation of
ICP, (which produces identical results to quaternion method of
ICP) is described as follows:

1. Remove means μs and μm from xs and xm to form xst

and xmt respectively.

2. For i = (1..M), for xi
mt find closest point in xst, which

we will call xf(i)
st

3. Form a new matrix of corresponding points, xct, such
that

xct =
(

x
f(1)
st . . .x

f(i)
st . . .x

f(N)
st

)T

.

4. Calculate the rotation: [U,S,V] = SVD(xT
mtxct), then

R = UV

5. Apply this rotation to the points in xmt: xmt ← Rxmt.

6. If, in the previous step, the rotation is greater than a cer-
tain amount, (this could be expressed as ||R− I2x2|| >
tol), go to step 2, otherwise continue to next step.

7. Algorithm has converged.

2.2. Formulation of the Homographical Iterative Closest
point algorithm (HICP)

The first difference between this algorithm and ICP is that the
points are represented in homogeneous coordinates, so that a
point (x, y, z) represents the point (x/z, y/z) in R

2. Secondly,
the calculation of the rotation matrix to apply in step 5 and 6
in the previous section is replaced by a suitable method for cal-
culating the best homography between two point sets. Meth-
ods for doing this are presented in [7]. Two appropriate meth-
ods are the direct linear transform (DLT) and the Gold Standard
Method, the latter of which minimizes the sum of squares dis-
tances of the transformed model points to their corresponding
scene points. We may describe the HICP algorithm as follows:

1. Remove means μs and μm from xs and xm to form xst

and xmt respectively, by forming the matrices Tm and
Ts:

Tm =

⎛
⎝ 1 0 −μm(1)

0 1 −μm(2)
0 0 1

⎞
⎠

Ts =

⎛
⎝ 1 0 −μs(1)

0 1 −μs(2)
0 0 1

⎞
⎠ .

2. Set Hcum = I3x3

3. For i = (1..M), for xi
mt find closest point in xst, which

we will call xf(i)
st

4. Form a new matrix of corresponding points, xct, such
that

xct =
(

x
f(1)
st . . .x

f(i)
st . . .x

f(N)
st

)T

.

89



5. Calculate best homography between xmt and xct, using
either DLT or Gold-Standard method.

6. Apply this homography to the points in xmt:

xmt ← Hxmt,

Hcum ← HHcum.

7. If, in the previous step, the effect of the transformation
is greater than a certain amount, (this could be expressed
as ||(H − I3x3|| > tol), go to step 2, otherwise continue
to next step.

8. Algorithm has converged. The final homography
which takes the model points to the scene points is
T−1

s HcumTm.

2.3. Expectation Maximization formulation of ICP

Next we briefly give an account of the EM-ICP method of [5]
First, it is necessary to describe the match matrix, which for
M model points and N scene points, has dimension MxN . It
is filled with binary values, with Aij = 1 if there is a hard
correspondence between the ith model point and the jth scene
point (there is only one hard correspondence per model point
per match matrix). Each such match matrix has a probability
p(A|xm,xs, T ), given the model points, scene points, and pro-
posed transformation T between them. The expected match
matrix A is the weighted average of each of these match ma-
trices p(A) = k

∑
p(A|xm,xs, T ).A, (with k a normalizing

constant), which gives us an expectation value for the possible
matches for each model point. The fact that A is a binary matrix
allows us to write

p(A) =
∏
ij

(Aij)
Aij (1)

There are obviously a combinatorial number of possible match
matrices to evaluate, but the authors of [5] show that since

p(A|xm,xs, T ) =
∏
ij

(
πij .p(xi

s|xi
m, T )∑

ik πik.p(xi
s|xk

m, T )

)Aij

(2)

where πij is a prior on any particular point match, we may
through identification of the term inside the product in Eqn.1
and Eqn.2 equate

Aij =
πij .p(xi

s|xi
m, T )∑

ik πik.p(xi
s|xk

m, T )
(3)

The EM-ICP algorithm is then formulated as the iterative mini-
mization of the expectation of a cost function. At each iteration
the average match matrix is calculated, then the best transfor-
mation calculated. The cost function used is:

CICP (T, A) = − log(xs, A|xm, T )

=
∑
ij

Aij

(
− log p(xi

s)|xj
m, T )− log(πij)

)

And the expectation of this cost function, which is the cri-
terion to be minimized, is

C(T ) = EA(CICP (T, A))

=
∑
ij

Aij

(
− log p(xi

s)|xj
m, T )− log(πij)

)
(4)

2.4. Expectation Maximization formulation of HICP

Although the formulation used for EM-ICP will work equally
well for HICP, it can also be done by noting the similarity be-
tween this point registration problem (under the assumption of
Gaussian noise) and that of training Gaussian Mixture Models
(GMMs). Under the assumption of Gaussian noise, each point
in the model point set may be regarded as a Gaussian center in
a GMM, which may be responsible for any of the scene points
(taking into consideration its location and covariance). There-
fore we may use the GMM update equations, to find the MAP
estimates for the new locations of the model points (although
these will not be their actual values after the transformation,
these values are determined by the results of the DLT or Gold
Standard methods for finding the best homography between the
model and scene points). The GMM update equations for train-
ing GMMs using the EM method are available in [3] and are as
follows, where αl is the prior on the lth GMM center, μl is the
lth GMM center’s mean, and Σl its covariance matrix.

αnew
l =

1

N

N∑
i=1

p(l|xi, Θ
g), (5)

μnew
l =

∑N
i=1 xip(l|xi, Θ

g)∑N
i=1 p(l|xi, Θg)

, (6)

Σnew
l =

∑N
i=1 p(l|xi, Θ

g)(xi − μnew
l )(xi − μnew

l )T

∑N
i=1 p(l|xi, Θg)

, (7)

where Θg is (αold
l , μold

l , Σold
l ), i.e. the priors, means and

standard deviations from the previous iteration, and l is a mix-
ture center number, (so p(l|xi, Θ

g) is the probability that mix-
ture center l was responsible for datum xi).

Since we calculate the homography after taking each ex-
pectation, we omit the calculation of the new covariances, since
they will not be used, and Eqn.7 assumes the means are up-
dated according Eqn.6, which they are not. Similarly, we don’t
put priors on the likelihood of any model point being a cause
of the scene point measurements, so only Eqn.6 is used in our
algorithm. The same equation, written using our notation for
point sets, is:

xjnew
m =

∑N
i=1 xi

sp(xj
m|xi

s, Θ
g)∑N

i=1 p(xj
m|xi

s, Θg)
, (8)

We also experimented with using a covariance measure for
each model point with respect to the scene points, as is some-
times used (e.g. [6]) after k-means clustering but before GMM
training:

1. For each model point, find the scene points which are
closest to that model point, and collect them into a matrix
Bi = (xg

s(1) . . .xg
s(n))T (if there are n such points for

the ith model point). If n = 0 then set Σi = σ.I2x2 and
return, if n > 0 continue to step 2.

2. Form the matrix Di, with xi
m subtracted from Bi so that

Di = Bi − Inx1(x
i
m)T

3. Σi = DT
i Di/n

This allows us to calculate a better posterior solution for the
locations of the mixture means (or model points, in our case).
In our experimental results, this version of the algorithm will be
referred to as EM-HICP-K. In the simple EM-HICP algorithm,
σ is initialized and decays it each iteration, and all covariance
matrices are simply Σi = σI2x2.
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2.5. Algorithm outline

1. Form initial transformation matrices which bring
barycenters of model and scene points to the origin:

Tm =

⎛
⎝ 1 0 −μ(xm)

0 1 −μ(ym)
0 0 1

⎞
⎠

Ts =

⎛
⎝ 1 0 −μ(xs)

0 1 −μ(ys)
0 0 1

⎞
⎠

2. Initialize σ and Hcum = I3x3

3. Convert points to non-homogeneous representation, and
create M virtual scene points:

vj
m =

∑N
i=1 xi

sp(xj
m|xi

s, Θ
g)∑N

i=1 p(xj
m|xi

s, Θg)
,

4. Convert all points back to homogeneous representation,
and calculate the best fitting homography Ht between
the model points and the virtual points.

5. Apply the homography Ht to the set of model points,
to find the model points for the next iteration: mi ←
Htmi

6. Update the Hcum matrix: Hcum ← HtHcum

7. Reduce σ using a decay factor. In our experiments we
used σ ← σf where f is a decay factor between 0 and
1.

8. If the algorithm has converged, (if ||Ht − I3x3|| < tol),
go to step 9, otherwise go to step 3.

9. We calculate the final homography between the two
point sets as Hfin = T−1

s HcumT−1
m

2.6. Divergence from pure EM

We can see that at stage 5, the above algorithm diverges from
a pure expectation maximization algorithm, since the homogra-
phy which is calculated does not itself maximize the likelihood
of the scene and the matches given the model points and trans-
formation, but rather satisfies the constraint that the new model
points must lie within a projective homographical transforma-
tion of the model points at the previous iteration, in the lest
squares sense. Therefore, it is not the expectation of the pos-
terior likelihood of the scene given the model and transforma-
tion which is maximized, but rather a compromise between this
expectation and constraints imposed by the projective homog-
raphy restriction. Each method for calculating a homography
(DLT, Gold-Standard) will in fact minimize a different criterion
in its attempt to calculate the best homography, (algebraic error,
Sampson error, etc.), but this is expedient in terms of the speed
and ease of implementation of such an algorithm.

3. Experimental Results
To verify the EM-HICP algorithm, we exposed it to real and
synthetic data.

σ % conv. % conv. % conv.
(noise) HICP EM-HICP EM-HICP-K

0 42 75 78
1 16 42 39
2 31 75 77
3 39 79 83

σ ave. iters ave. iters ave. iters
(noise) HICP EM-HICP EM-HICP-K

0 15.2 15.8 11.3
1 24.1 15.3 12.7
2 14.6 15.9 16.1
3 15.2 15.4 16.3

Table 1: Tables of convergence results for the HICP and the
EM-HICP algorithm, using synthetic data. Ave. iters is the
average number of iterations over the successfully convergent
trials, to converge. 150 trials were done for each value of σ,
which is the standard deviation of the Guassian noise added to
the coordinates of the points in the scene point set.

3.1. Synthetic data

In a single trial using synthetic data, the following procedure
was followed: a random point set of 150 points is generated
in the range (x, y) ∈ ([0, 100], [0, 100]). A random homogra-
phy matrix Hr is generated from the product of homographies
Hr = Hs ∗Ha ∗Hp, such that

Hs =

⎛
⎝ s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

0 0 1

⎞
⎠

Ha =

⎛
⎝ k1 k2 0

0 k3 0
0 0 1

⎞
⎠

and

Hp =

⎛
⎝ 1 0 0

0 1 0
v1 v2 1

⎞
⎠

and the elements in these matrices were drawn from the fol-
lowing distributions: s [0.25, 0.75], θ [0, 0.2π], kl [0.9, 1.1],
k2 [0], k3 [0.9, 1.1], v1 [−0.001, 0.001], v2 [−0.001, 0.001].
We then generate our scene points by multiplying Hr with the
set of model points (which are represented in homogeneous co-
ordinates).

pi = Hrmi

It should be noted that a homography matrix generated from
values outside of these ranges tend to produce synthetic scene
points which cannot be registered using either the HICP or the
the EM-HICP method, and are are not a useful way of compar-
ing the two algorithms. Finally, we corrupt the newly generated
scene points with Guassian noise, so that

si = pi + n,

where n is a sample from a Gaussian distribution with standard
deviation σ.

The HICP, and EM-HICP algorithms are then run on the
this synthetic data, and the convergence results are shown in
Table 1.
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Image iters iters iters
number (HICP) (EM-HICP) (EM-HICP-K)

1 10 10 10
2 6 5 5
3 DNC 40 38

Table 2: Table of convergence results for the HICP and the EM-
HICP algorithm, using real data. Iters is the number of iterations
to converge. if convergence was correct. DNC indicates lack of
correct convergence.

3.2. Real data

In the experiments involving real data, some real image pairs
from a pan-tilt-zoom camera were taken, and some images of
(approximately) planar scenes were taken. This guarantees that
corresponding points between the two images are related by a
planar homography. To extract corners from each of the im-
age pairs, the Harris corner detector [4] was used. Obviously
the performance of the corner detector/feature extractor, and
the reliability with with it will extract the same points in cor-
responding scenes affects the outcome of any ICP algorithm
quite seriously. For example, the Harris detector performs un-
reliably when a straight edge changes orientation between im-
ages, where it is prone to selecting corners from this edge in
one image more than in the other. Therefore, where the HICP
registration algorithm has failed, it is usually the failure of the
feature detector to produce consistent features across images. A
table of convergence results is shown in Table 2.

4. Discussion
Results show that EM-HICP-K performs slightly better than the
EM-HICP, and each of them perform better than HICP, in terms
of successful convergence. The average number of iterations
per successful convergence could be improved for EM-HICP
and EM-HICP-K if at some appropriate point the algorithm
was forced into choosing hard correspondences for each model
point, since many iterations are wasted close to the correct local
minimum.

5. Conclusions
We can see that the EM-HICP algorithm is faster than the HICP
algorithm to converge to the true solution, and is more robust to
converge to the correct solution when Gaussian noise is added
to the synthetic data. In the real data, which consists of corner
features extracted from image pairs taken by pan-tilt-zoom cam-
eras and of planar scenes under general intrinsic and extrinsic
parameters, the EM-HICP algorithm performed better than the
HICP algorithm. Moreover, when covariances are estimated for
each model point, the algorithm (referred to previously as EM-
HICP-K) becomes slightly more reliable than when the same
spherical covariance matrix is used for each point for an itera-
tion.
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