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Abstract

This paper presents an accurate interactive image segmentation
tool using graph cuts and image properties. Graph cuts is a
fast algorithm for performing binary segmentation, used to find
the global optimum of a cost function based on the region and
boundary properties of the image. The user marks certain pixels
as background and foreground, and Gaussian mixture models
(GMMs) for these classes are built using the colour and texture
features of corresponding pixels. A likelihood ratio is used to
calculate the relative probability of each pixel being foreground
or background, based on the GMMs. Many features and their
combinations are analyzed on images from the Berkeley Seg-
mentation Dataset. Results of different segmentations are com-
pared using precision-recall curves, F-score and accuracy. The
average accuracy of the algorithm was 92% over a set of 20
images and the best accuracy was 99.5%.

1. Introduction
There are many methods used to segment images, from simple
ones like edge detection and thresholding to complex ones like
active shape models, active contour models, clustering, and
graph-based segmentation. The simple methods do not need
prior knowledge but have limitations, whereas more effective
methods are complex and need training data.

Image segmentation based on image properties is an ex-
tensively researched problem. Interactive image segmentation
is more popular than automatic segmentation because it is an
easier problem. Methods based on Gaussian mixture models,
Markov random fields, texture and colour-based classifica-
tion [7, 12], and clustering algorithms like mean shift [5] (or a
combination of these) are used to segment images.

The methods developed in this paper are based on work
by Boykov and Jolly [3]. Image colour and texture properties
are used to build probabilistic models of foreground and
background, and a graph cut is used to globally optimize a cost
function based on them. Precision-recall curves are used to
compare results of segmentation from different methods.

Section 2 gives a brief summary of the previous work
done using graph cuts, and other segmentation methods. A
detailed description of the process used in this paper is given in
Section 3. Experiments and results are explained in Section 4.
Section 5 provides suggestions for future work and conclusions.

Images from the Berkeley Segmentation Dataset [9] are
used. The images displayed in this paper are named ‘eagle’,
‘plane’, ‘flower’, ‘birds’, and ‘grass’.

2. Related Work
This work is based on the interactive graph cuts method
described in Boykov and Jolly [3]. The user marks certain
pixels as “background” and “object”. The image is segmented
by finding the global optimum of a cost function. This cost
function is based on the region and boundary properties of the
image.

Let P be the pixels in an image and N be a set of
all unordered pairs of neighbouring pixels. Also, let
A = (A1, . . . , Ap . . . , A|P|) be a binary vector where compo-
nent Ap denotes background or foreground assignment to pixel
p in P . Thus A defines one possible segmentation out of a set
of many segmentations. The cost function E(A) is

E(A) = λR(A) + B(A) (1)

where
R(A) =

∑

pεP

Rp(Ap) (2)

B(A) =
∑

{p,q}εN

Bpq(Ap, Aq) (3)

and
Bpq(Ap, Aq) =

{
1 if Ap != Aq,
0 otherwise.

In (1), λ is a coefficient that shows the weight given to
region properties R(A) with respect to the boundary properties
B(A). The region term R(A) consists of Rp, the penalty
of assigning each pixel to background or object. The B(A)
term describes the boundary properties of the image: Bpq

can be interpreted as the evidence of a boundary between two
neighbouring pixels p and q. Boykov and Jolly also describe
a way to define R(A) and B(A) using variables in their
algorithm. The same algorithm is used in this paper, but with
R(A) and B(A) calculated differently. Section 3.2 describes
and justifies the assignments of R(A) and B(A).

Graphs cuts have been used for 2-D and 3-D segmenta-
tion. In 3-D, volumetric graph cuts are used for reconstruction
and segmentation of surfaces. In [8] an algorithm is presented
to perform segmentation and to estimate the pose of a human
body using multiple views. Although this paper covers work
done in 2-D, graph cuts can be applied to 3-D.

The graph cuts algorithm is fast and effective. Instead of
improving its performance, much work has been done in
modifying and setting up the variables differently.

A comparison of the performance of Magic Wand, Intel-
ligent Scissors (Live Wire), Bayes matting, Knockout 2, graph



cut, and level sets is done in [13]. GrabCut, an iterative and
interactive image segmentation tool, is introduced in [13]. The
main aim of GrabCut is to reduce user interaction by using
mechanisms called “iterative estimation” and “incomplete
labelling”. GrabCut starts with the user drawing a rectangle
around the desired object. Foreground is estimated using the
pixel data in the rectangle. A segmentation using graph cuts is
done and the user is allowed to add background, foreground
or matting information to improve the segmentation. Matting
information is border information that is used to recover
foreground colour information, free of colour bleeding from the
background. “Incomplete labelling” enables the user to only
mark background pixels. There is no need to mark foreground
pixels explicitly because of the rectangle marked by the user.
“Iterative estimation” assigns provisional labels to some pixels
(in the foreground) that can be retracted subsequently. Border
matting is used to overcome the problem of blur and mixed
pixels in the segmentation.

In [5], mean shift is used to cluster and segment images.
The advantage of mean shift clustering is that the user doesn’t
have to specify the number of clusters. Graph cuts and mean
shift are used in [14]. The image is mean shifted and then a
graph cut is used to do the segmentation. This approach was
implemented but was considered to be ineffective because
graph cuts should be given as much information about the
image as possible, rather than clustering and masking the
information from the image.

An adaptive Gaussian mixture Markov random field (GMMRF)
model is used to segment images in [2]. A “pseudo-likelihood”
algorithm is formed after estimating the colour properties of
the image. This “pseudo-likelihood” algorithm is based on [1].
A Graph cut is used to segment images using the output of
this “pseudo-likelihood” algorithm. The pseudo-likelihood
function has limitations as it lacks the complexity for useful
models [2].

Gaussian mixture models (GMMs) based on colour and
texture features are used in [12] to classify and segment
images. In [11] GMMs are used for image retrieval from
databases. Although [12, 11] do not use graph cuts, the work
done using GMMs based on colour and texture is important
for this paper. They use GMMs based on different colour
spaces, like RGB and LAB, and texture feature filters like the
discrete cosine transform and wavelets. They also compare the
performance of GMMs to other statistical models like the 2-D
hidden Markov model (HMM), 2-D multi-resolution hidden
Markov model (MHMM) and classification and regression
trees. It was seen that the average classification error rates were
the lowest for GMMs. The decision of using GMMs for this
work was based on these results from [12, 11].

Image segmentation is done using texture measures in [7].
These texture measures include maximum response filters,
ring/wedge filters, Gabor filters and Berkeley filters.

3. Implementation
Our algorithm works as follows. The user marks certain pix-
els as foreground and background. GMMs for foreground and
background are estimated using these marked pixels. The re-
gion properties are set using probability of each pixel being
background and foreground from the GMM. The boundary

properties are set using the gradient of the image. The region
and boundary terms are fed into the graph cut formation for a
pixel grid where each pixel is a node in the graph. The details
of each step are discussed in the following sections.

3.1. Region and Boundary Properties

The algorithm described in [4] was used to implement the seg-
mentation technique. The pixel grid is used to set up the graph.
Each pixel is a node in the graph and the region and boundary
properties are derived accordingly. Because the boundary prop-
erties are the evidence of an edge in the image, the log of the
gradient of the image and the distance transform of the Canny
edge detection are used. Experiments show that both methods
work equally well. Region properties are derived from the log
likelihood ratio in equations (4) and (7). A 8-pixel neighbour-
hood is used.

3.2. GMMs of Colour and Texture Features

Using the pixels marked by the user, GMMs are set up for fore-
ground and background. Features like colour and texture can be
added to the GMM. A Gaussian distribution has the form

p(x) =
1√
2πσ

· e−
1
2 (x−µ)2 , (4)

where µ is the mean and σ is the standard deviation. A GMM,
with the feature vectors Xi = {xt, 1 ! t ! Ti} for data
points, uses M Gaussians to model the data as follows:

P (Xi|θi
GMM ) =

T i∏

t=1

M∑

j=1

P (zj) Pzj (xt|µj , Σj) (5)

where θi
GMM includes the model parameters mean, covari-

ance and mixture weights i.e.{P (zj), µj , Σj , 1 ≤ j ≤ J}.
Pzj (xt|µj , Σj) is the Gaussian distribution for the j-th class,
with a mean vector µj and a covariance matrix Σj as:

Pzj (xt|µj , Σj) =
1

(2π)D/2 | Σj |1/2
e−

1
2 (xt−µj)T Σ−1

j (xt−µj)

(6)
where D is the dimension of the feature vector xt. Usually
the covariance matrix Σj is set to be a diagonal matrix with
the covariances of the features as its elements. This is done to
reduce the size of the parameter space. The probability of each
pixel being in either of the classes is calculated using GMMs.

The logarithmic likelihood ratio, derived from these probabil-
ities, is used to set the region property terms in the graph cut
formation:

Log Likelihood Ratio (llrp) = log(K · pf/pb) (7)

where llrp is the log likelihood ratio of a pixel p, and pf and pb

are the probabilities of a pixel belonging to the foreground and
background respectively. The sensitivity of the segmentation
depends on K, the weight given to foreground relative to
background. The probability of a pixel being foreground
increases with the value of K and vice versa. Section 4 gives a
detailed analysis of the effect of K on the final segmentation.

For grayscale images, the raw intensity of the pixels, Ga-
bor and MR8 filters were used in the GMMs. For colour
images, RGB values, Luv values, gabor filters and MR8 filters
were used. The Netlab toolbox [10] is used to set up the GMM



(a) Original image. (b) Log likelihood ratio image.

Figure 1: Original image and the log likelihood ratio of each
pixel in the image based on GMM.

Table 1: Assignment of edge weights

edge weight (cost) condition
{p, q} Bpq {p, q} ∈ N

{p,S}
LLRp p ∈ P, p /∈ O ∪ B

min(LLRp) p ∈ O
max(LLRp) p ∈ B

{p, T }
LLRp p ∈ P, p /∈ O ∪ B

max(LLRp) p ∈ O
min(LLRp) p ∈ B

and calculate the probabilities. Because GMMs are used in
this paper, the weights of the edges are set in a different way
to that of [3]. The edge weights are set as follows: where LLR
is the log likelihood ratio matrix, and p and q are unordered
neighbourhood pixels. O is “object”, B is “background”, S is
the source terminal and T is the sink terminal of the graph. The
boundary property term Bpq is calculated using the log of the
gradient or the distance transform of the Canny edge detection
filter.

4. Results
This section gives a detailed analysis of the effect of different
GMM components on the final segmentation. Results of seg-
mentations using various values of λ and K are compared using
precision-recall curves, F-score and accuracy.

4.1. Defining a performance measure

Many papers written on the topic, indicate the performance
of their algorithms in the form of the segmented images, as
putting a numerical value to the error function is difficult. The
obvious performance measure can be the number or percentage
of misclassified pixels based on a ground truth image. This
may not be an accurate measure as it fails to convey the
information of true and false positives and negatives. Thus a
more comprehensive measure of performance has to be defined.

Precision and recall measures and F-score are used in
this paper to define error. They are also used in [9, 6]. The
error measures used are defined as follows:

Precision =
tp

tp + fp
, (8)

Recall =
tp

tp + fn
, (9)

Accuracy =
tp + tn

tp + tn + fp + fn
, (10)

Fscore = 2 · Precision×Recall
Precision + Recall

, (11)

where tp is the number of true positives, tn is the number of
true negatives, fp is the number of false positives and fn is the
number of false negatives.

The output of the segmentation is a binary vector with
the same size as the image. A true positive is when output of
the segmentation is 1 when ground truth is 1, a true negative is
when the output of the segmentation is 0 while the ground truth
is 0, a false positive is when the output of the segmentation is 1
when ground truth is 0, and a false negative is when the output
of the segmentation is 0 while the ground truth is 1.

Accuracy is the ratio of misclassified pixels to the total number
of pixels. Precision is low when there is significant over-
segmentation. Low recall is a result of under-segmentation,
and indicates failure to retrieve relevant image information.
For a perfect segmentation, precision and recall will equal 1.
F-score is a combination of precision and recall to provide a
single measure for the system, which will be 1 for a perfect
segmentation.

4.2. Parameters K and λ

In Equation (7), K is a parameter that weighs the foreground
and background probabilities. It can be used to adjust the
sensitivity of the segmentation. Figure 2 shows the effect of
K on the final segmentation. As K increases, more pixels are
classified as foreground.

(a) K = 0.01. (b) K = 1.

Figure 2: The effect of K on the final segmentation (λ = 0.02).

The λ in Equation (1) is a coefficient that shows the
weight given to the region properties with respect to the
boundary properties. When λ is 0, the cost function in Equation
(1) consists of boundary properties only. Region and boundary
properties will have equal weights when λ is 1. As λ increases,
the weight assigned to region properties will increase. The
coefficient λ is an important parameter in the graph cut: the
value that gives the best segmentation will be different for
different images.

Figure 3 shows a family of precision-recall curves for
different values of λ and K. The different curves are for
different values of λ as K varies. For the ideal segmentation,
precision and recall will be 1. As K increases, it is seen that
the precision and recall values vary. For a low λ value (λ =
0.01) the recall is low resulting in under-segmentation. Low
precision and over-segmentation is observed when λ increases.

The sensitivity of the segmentation depends on K. When
K is 0, all pixels are classified as background. As K increases
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Figure 3: A family of precision-recall curves as K and λ vary.

the precision starts decreasing and the recall starts increasing.
Figure 3 shows that the best segmentation is achieved when
K is 1 and the background and foreground probabilities are
equally weighted. Over-segmentation is observed as K goes
above 1. This means that some background pixels are classified
as foreground because of an increase in K. This means that all
the foreground pixels are in the segmentation i.e. high recall,
but some background pixels are also in the segmentation i.e.
low precision.
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Figure 4: Accuracy versus K. A good value for K is between
0.1 and 10. (K is plotted on a log axis.)

Accuracy is the ratio of misclassified pixels to the total
number of pixels and F-score is a combination of precision and
recall. Figures 4 and 5 show the effect of K on accuracy and
F-score. Low and high K values result in under-segmentation
and over-segmentation respectively. So accuracy and F-score
will be low for very low or very high values of K. As seen
in Figures 4 and 5, accuracy and F-score are highest when
K is close to 1 and λ varies. High accuracy and F-score are
indications of a good segmentation.

In Section 4.1, F-score is considered a better performance
measure than accuracy. This is because accuracy is the percent
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Figure 5: F-score versus K. A good value for K is between 0.1
and 10. (K is plotted on a log axis.)

of misclassified pixels where as F-score has information
about precision and recall. Figures 4 and 5 demonstrates this
characteristic by showing that F-score is more sensitive than
accuracy. For a good and bad segmentation, the change in
F-score is more than that in accuracy.

Although the actual values of λ that give the best seg-
mentation may differ for different images, the precision-recall
curve (in Figure 3) and the F-score and accuracy curves (in
Figure 4 and 5) will have the same characteristic. Experiments
show that λ values between 1 and 10, and K values between
0.1 and 10 work well for most segmentations. Both these
parameter can be varied according to the sensitivity needed for
a particular segmentation.

4.3. Results and Interpretation

Experiments were done on grayscale and colour images.
Colour and texture measure were used to set up GMMs. The
results of the segmentations using different methods were
compared using the measures mentioned above. A and F stand
for accuracy and F-score respectively. The performance of
MR8 filters was better than Gabor filters, so Gabor filters have
been excluded from this report. Experiments were done with
the following features of images being selected for the GMMs:

1. Grayscale images :

• Intenstiy values,

• Intensity values & MR8 filters.

2. Colour images :

• R, G, B values,

• G, (G-R), (G-B) values,

• L, u, v values,

• R, G, B, L, u, v values & MR8 filters,

• G, (G-R), (G-B), L, u, v values & MR8 filters,

• L, u, v values & MR8 filters, and

• G, (G-R), (G-B), L, u, v values.



4.3.1. Grayscale images

As shown in Figure 6, the best segmentation was acquired with
intensity values. MR8 filters result in over-segmentation which
means that the segmentation has the object and some unwanted
regions (Figure 6(c)). In the case of the ‘birds’ image, intensity
values give the best segmentation, whereas in an image with
texture content MR8 filters will be most useful.

(a) Original ‘birds’ image. (b) (A = 0.995, F = 0.953).

(c) (A = 0.976, F = 0.803).

Figure 6: (a) Original image and segmentation using (b) inten-
sity values and (c) intensity values and MR8 filters.

(a) Original ‘plane’ image. (b) (A = 0.994, F = 0.946).

Figure 7: (a) Original image and (b) segmentation using inten-
sity values.

4.3.2. Colour Images

The algorithm works better on colour images as they have more
information than grayscale images. Many different features
were selected in the GMM and different features gave good
results for different images.

MR8 filters lead to over-segmentation but were useful in
some cases like Figure 12(d).

Luv values worked better than RGB values in images
that had brightness differences. For example, the corners of
Figure 10(a) are as dark as the eagle so they are classified as
foreground in RGB segmentation (Figure 10(b)), but the Luv
segmentation in 10(c) gives a better result.

The yellow region in Figure 8(a), which should be in the
background, is classified as the object in RGB segmentation
because the centers of the flowers are yellow and those values
are in the GMM for “object”. Combining colour spaces or MR8
filtering solves the problem and gives a better segmentation.
Otherwise, any selection of features works equally well.

(a) Original ‘flowers’ image. (b) (A = 0.967, F = 0.962).

(c) (A = 0.973, F = 0.969). (d) (A = 0.976, F = 0.972).

Figure 8: (a) Original image and segmentation using (b) RGB
values, (c) Luv, G,(G-R),(G-B) values and (d) RGB, Luv and
MR8 filters.

(a) Original ‘plane’ image. (b) (A = 0.977, F = 0.822).

(c) (A = 0.995, F = 0.952). (d) (A = 0.994, F = 0.946).

Figure 9: (a) Original image and segmentation using (b) Luv
and MR8 filters, (c) Luv values and (d) RGB values.

5. Conclusion and Future Work
It can be concluded that a good segmentation can be derived
for any image based on colour and texture parameters, using
GMMs and graph cuts. The average accuracy of the algorithm
was 92% over a set of 20 images and the best accuracy was
99.5%. As shown in figures 6 to 10 the segmentations are
logical, as if they were made by a human subject, and they
achieve the goal of interactive segmentation within 1 iteration
of the algorithm.

Features are selected carefully in this paper, but a formal
study in feature selection can be done in future. Automatic
feature selection that depends on the image will be effective.
This will enable the algorithm to tell which features to select to
give the best possible segmentation for any given image.

The boundary information can be extracted from the im-
age in a different way. An explicit ‘edge’ model can be formed
from the user-marked pixels and each pixel or regions of pixels
can be tested for evidence of boundary using this model.

A different grid, or grouping of regions in the image, can



(a) Original ‘eagle’ image. (b) (A = 0.966, F = 0.916).

(c) (A = 0.974, F = 0.934). (d) (A = 0.967, F = 0.921).

Figure 10: (a) Original image and segmentation using (b) RGB
values, (c) Luv values and (d) Luv and MR8 filters.

(a) Original ‘grass’ image. (b) (A = 0.985, F = 0.954).

(c) (A = 0.986, F = 0.956). (d) (A = 0.995, F = 0.984).

Figure 11: (a) Original image and segmentation using (b) RGB
values, (c) Luv and MR8 filters and (d) G,(G-R),(G-B), Luv and
MR8 filters.

(a) Original ‘birds’ image. (b) (A = 0.991, F = 0.918).

(c) (A = 0.994, F = 0.945). (d) (A = 0.995, F = 0.951).

Figure 12: (a) Original image and segmentation using (b) Luv
values, (c) RGB filters and (d) G,(G-R),(G-B), Luv filters.

be chosen instead of a pixel grid, and groups of pixels can be
classified. This grid or grouping can be derived from clustering
algorithms like mean shift, k-means, or nearest neighbour.
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