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Abstract

An extension of the bilateral filter is described. The pro-
posed filter is a weighted median filter which adaptively
estimates the weights in a similar manner to that of the bi-
lateral filter. The proposed filter strikes a compromise be-
tween smoothing and preserving important detail.

1 Introduction

The bilateral filter was proposed by Tomasi and Manduchi
as an image denoising algorithm [12]. Image denoising is
a common preprocessing stage used to improve the visual
appearance of images, and to improve subsequent image
processing stages such as segmentation or motion estima-
tion. The bilateral filter is a non-linear filter which takes
into account local image information in order to build a
kernel which smoothes without smoothing across edges.

It is clear from the literature that there is a direct rela-
tionship between bilateral filtering and robust estimation
[13]. Also clear is the relationship between anisotropic dif-
fusion and robust estimation [2]. It is known that there is
a fundamental relationship between the bilateral filter and
anisotropic diffusion [1, 5, 10].

This paper considers a natural extension to the bilateral
filter. Instead of a weighted summation of the pixels in a
neighbourhood, the result is the weighted median of pixels.
The median filtering approach helps to prevent outlier pix-
els from unduly distorting the result. There are a number of
weighted median filters described in the image analysis lit-
erature (see [3] for some examples). These filters tend not
to be sufficiently data adaptive. For example, pixels across
a strong edge may still significantly influence the median.

The traditional bilateral filter uses the Gaussian kernel
for both spatial and range (or tonal) filtering. Replacing the
kernel offers the possibility of reducing computational time
without impairing performance severely.

This paper begins by describing the traditional bilateral
filter. The modifications are then described in detail. A
series of experiments comparing the proposed filter and the
original bilateral filter are described.

2 The traditional bilateral filter

The bilateral filter is a non-linear denoising filter. A Gaus-
sian kernel is used for domain and range filtering. This
results in data dependent filtering.

The bilateral filter simultaneously weights pixels based
on spatial distance from the centre pixel as well as distance
in tone (intensity for example). The domain filter weights
pixels based on their distance from the centre:

v(x − y) = 1

2
e
− (x−y)(x−y)

2σ2
D , (1)

where x and y denote pixel spatial positions. The spatial
scale is set by σD . The range filter weights pixels based on
the photometric (tonal) difference:

w( f (x)− f (y)) = 1

2
e
− ( f (x)− f (y))( f (x)− f (y))

2σ2
R , (2)

where f (·) denotes image tonal values (intensity or
colour). The degree of tonal filtering is set by σR . The
bilateral filter is then:∫

Rd f (y)v(x − y)w ( f (x)− f (y)) dy∫
Rd v(x − y)w ( f (x)− f (y)) dy

(3)

Note that kernels other than Gaussian kernels are not ex-
cluded. See Durand and Dorsey for an example of other
kernels applied to bilateral filtering [4].

Boomgaard and Weijer [13] generalise the bilateral filter
to space-tonal convolution. This is an attempt to address
a fundamental problem with bilateral filters. Noise affects
all pixels, even the centre pixel ( f (x)) used as a reference
for the tonal filtering. Noise affecting the centre pixel thus
has a disproportionate effect on the result. Boomgard et al
propose replacing the centre pixel with some estimate of
the true value. What this may be is not specified. A similar
approach was suggested by Perona and Malik to reduce the
influence of noisy edges on anisotropic diffusion [9]. Per-
ona and Malik suggested low-pass filtering with a kernel of
small spatial extent. Again, Boomgaard et al use a Gaus-
sian kernel in their examples of spatial-tonal convolution.
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3 The modified bilateral filter

The traditional bilateral filter performs a weighted averag-
ing of a neighbourhood. Noise influencing the centre pixel
has a disproportionate influence on the range filtering. This
suggests the following modifications:

(i) Replacing the summation. In this paper, the pixels are
combined using a weighted median. Other methods,
for example stack filters [7, 14], are possible.

(ii) Exploring alternative kernels for both domain and
range filtering.

This provides, in theory, a number of advantages. A
simpler kernel than the Gaussian may be easier to com-
pute, leading to a performance speed tradeoff. Selecting
the median rather than the mean leads to a filter more toler-
ant of outliers and hence noise perturbed centre pixels. The
Gaussian kernel is of infinite extent, this leads to averag-
ing even when the weight allocated is small. Consider the
simple case of a step edge, irrespective of how small one
makes the domain or range sigmas, the step is rounded, or
smoothed. This is because all pixels contribute to the av-
eraging process, even though their weights might be small.
One can make a case that strong edges should be left intact.
This prompts the consideration of other kernel functions. A
similar argument is used by Black et al to justify the use of
alternate edge stopping functions for anisotropic diffusion
[2].

There appears to be no compelling reason to use ker-
nels from the robust statistical literature only. Maintaining
strong edges requires that the range kernel is of finite ex-
tent. In effect, any finite extent, low pass kernel will do.
The kernel is then selected based on the desired smoothing
as well as the computational requirements.

There is also no compelling reason for the range kernel
to be based on weighted differences between pixels only.

4 Potential kernels

Two factors are of interest: the degree of outlier rejection
by each kernel (or the degree of edge preservation), and the
spatial extent of the kernel which selects the spatial scale of
the filter. The following robust kernels are used [9, 2, 11]:

Andrew’s wave: g(x, σ ) =
{

sin(πx/σ)
πxσ |x | ≤ σ

0 |x | > σ

El Fallah Ford g(x, σ ) = 1√
1 + (x/σ)2

Gaussian: g(x, σ ) = e
− x2

2σ2

Huber’s mini-max: g(x, σ ) =
{

1
σ
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Lorentzian: g(x, σ ) = 2

2σ 2 + x2

Tukey bi-weight: g(x, σ ) =
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The following kernels are considered as well:

Cosine: g(x, σ ) =
{

cos
(
πx
2σ

) |x | ≤ σ

0 |x | > σ

Flat g(x, σ ) =
{

1
σ

|x | ≤ σ

0 |x | > σ

The Flat kernel is simple to compute, and when used as
a domain filter allows for the effect of various range filters
to be considered in isolation.

The kernels are dilated to ensure that the kernels are at
the same spatial scale. The dilation is selected by forcing
the peaks (where these exist) of the various influence func-
tions (ψ(x) = xg(x, σ )[11]) to line up. This allows the
rejection of outliers to begin at (nearly) the same point for
each kernel. This results in selecting a scale factor (σR) for
the range filtering. Note that the El-Fallah Ford influence
function only asymptotically approaches one. There is thus
no extremum, which leads the choice of σR to be 0.99 of the
maximum. It should be clear that selecting a larger value
for σR leads compressing the influence function, leading to
a resemblance to the Huber mini-max influence function.

The σR values are shown in table 1.

TABLE 1: Kernel tonal (σR) and spatial extent.

Kernel σR 99% radius(pixels)

Andrews Wave 0.5 1
Cosine 0.5477 1
ElFallah Ford 10 20
Flat 1 1
Gaussian 1 3
Huber’s mini-max 1 20
Lorentzian

√
2 17

Tukey’s bi-weight 1√
5

1

The spatial kernels are selected to be radially symmet-
ric.1 The spatial extent sets the size of the structures pre-
served or removed. Table 1 shows the spatial kernel radius
at which kernel values are less than 0.01% of the peak val-
ues. This then selects the spatial extent of the filter.

1Spatially separable kernels are expected to perform similarly.
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5 Experimental results

Some variants of the proposed filter are tested. It is quite
difficult to quantitatively compare denoising algorithms on
real world data. Without ground truth data a comparison
is impossible. The algorithms are first compared on artifi-
cial data (which to some degree resembles the real world
data). Noise is added, and the Peak Signal to Noise Ra-
tios (PSNRs) are compared. Several noise distributions are
considered: Gaussian and “Salt and Pepper” noise.

The Peak Signal to Noise Ratio (PSNR) is defined as [3]:

PSNR = 20 log
Peak value√

1
M N

∑M
y=1

∑N
x=1 ( f (x, y)− g(x, y))2

,

(4)
where f (x, y) denoted the original data (without noise
added) and g(x,y) denotes the filtered data.

This provides a measure of how different the filtered
noise added image and the original images are.

5.1 Creation of the artificial data

A series of points are randomly placed on an empty image.
The Voronoi tessellation [8] of the image is computed. The
centroids of the Voronoi regions are found. The distance
function from each centroid is computed. The distance
function is then inverted and Phong shaded [6] to yield
an artificial image of froth. An example artificial image is
shown in figure 1. While the bubble shapes and boundaries
are somewhat distorted, the individual bubbles and overall
effect are fairly realistic as compared to figure 2.

FIGURE 1: An example of artificial froth.

5.2 Experiments on artificial data

Artificial data was generated and analysed to provide a
quantitative measurement of the denoising performance of

the proposed filter.
A sequence of ten images was generated and noise

added. A range of kernels with different σ values was ap-
plied and the results summarised in tables 2 and 3. The
first test added Gaussian noise with variance σ 2 = 0.0016
(with the maximum pixel intensity in the image rescaled to
one). Tables 4 and 5 summarise the results for “Salt and
Pepper” noise. The noise parameters were 1% probability
of a pixel being Salt noise (or set to maximum intensity)
and 1% probability of a pixel being Pepper noise (or set
to minimum intensity). In the interests of brevity, only the
best and the fastest range kernels are shown for each noise
and domain filter type.

The traditional and proposed filter perform similarly for
the Gaussian noise added case. It is clear that Gaussian
domain and range kernels are less efficient than other alter-
natives, such as Flat domain and range kernels.

The situation for the “Salt and Pepper” noise is different.
The Gaussian domain and Tukey Bi-Weight range performs
very well for the proposed filter. The best performing ker-
nels for the traditional filter are the Cosine kernels for both
domain and range filtering. The Flat kernels again provide
a fast alternative with performance close to the best kernel
combination.

In contrast, a 3 × 3 median filter yields a PSNR of
34.4dB on the Gaussian added noise, and a PSNR of
41.9dB for the “Salt and Pepper” added noise. In both cases
the proposed filter does better.

5.3 Experiments on real world data

Some real world data was analysed to provide a qualitative
understanding of the performance of the proposed filter.
The image is of a froth cell with interfering light sources.
These are: sunlight at an oblique angle leading to strip
highlights on the bubbles, and plant lighting leading to tiny
highlights visible on the large bubbles. Since highlights
are natural markers for the bubbles, an attempt is made to
remove the undesired highlights.

Figure 2 shows an example froth image, denoised ver-
sion and error image after iterating the traditional bilateral
filter four times. The domain and range sigmas are, 14
and 0.235 respectively. The kernel used for both domain
and range filtering is the Andrew’s Wave kernel. The error
image was enhanced by applying the gamma power law
(y = xγ ) using a gamma of 4. The error image is inverted
to make the detail more visible.

Figure 3 shows the result of applying the proposed bi-
lateral filter four times (the domain and range sigmas and
kernels are as before). Comparing the results of the two fil-
ters shows that the proposed filter does better at preserving
detail (compare the error images), yet is better at removing
the small point highlights. The traditional filter is seen to
remove structures by blurring or smearing.
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(a) An example image.

(b) Denoised by traditional bilateral filter.

(c) Inverted and enhanced error image.

FIGURE 2: The traditional bilateral filter on a froth image.

(a) An example image.

(b) Denoised by proposed bilateral filter.

(c) Inverted and enhanced error image.

FIGURE 3: The proposed bilateral filter on a froth image.
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TABLE 2: The traditional filter on Gaussian noise.
Range kernel PSNR σD σR Time(s)

Domain Filter: Andrews Wave
Cosine 34.41 4.0 0.1 5.1
Flat 34.35 4.0 0.1 3.0

Domain Filter: Cosine
AndrewsWave 38.39 7.3 0.1 48.1
Flat 37.69 7.3 0.1 22.4

Domain Filter: ElFallahFord
ElFallahFord 27.95 0.005 0.1 0.54
Flat 27.97 0.005 1.1 0.58

Domain Filter: Flat
AndrewsWave 37.56 4.0 0.1 17.3
Flat 37.00 4.0 0.1 8.5

Domain Filter: Gaussian
Cosine 35.99 1.3 0.1 18.2
Flat 35.87 1.3 0.1 11.4

Domain Filter: HuberMiniMax
Flat 36.48 0.2 0.1 8.2
HuberMiniMax 36.50 0.2 0.1 8.9

Domain Filter: Lorentzian
Flat 31.79 0.17 3.1 8.3
HuberMiniMax 31.80 0.17 0.1 8.7

Domain Filter: TukeyBiWeight
AndrewsWave 36.23 8.9 0.1 17.4
Flat 36.06 8.9 0.1 8.5

6 Conclusions

A natural modification of the bilateral filter is proposed.
The proposed filter is seen to provide a good compromise
between detail preservation and removing image structures
at the specified scale. Not surprisingly, the proposed filter
performs better for “Salt and Pepper” noise as compared to
additive Gaussian noise. The performance of the proposed
and original filters is seen to be similar for Gaussian noise.

It is clear that alternative kernels can provide a compro-
mise between speed and performance for both the tradi-
tional and proposed the bilateral filters.
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