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ABSTRACT

Inverse lens distortion modelling allows one to find the pixel in a distorted image which corresponds to a known
point in object space, such as may be produced by RADAR. This paper extends recent work using neural networks
as a compromise between processing complexity, memory usage and accuracy. The already encouraging results
are further enhanced by considering different neuron activation functions, architectures, scaling methodologies
and training techniques.
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1. INTRODUCTION

1.1 Lens Distortion

Lens distortion is the non-linear refraction of light rays by a lens such that it deviates from the ideal pin-hole
camera projection model. Complex lenses, those made of several glass elements, typically exhibit monotonically
increasing contraction of the light ray bundle towards the optical axis for wide angle lenses. This is known as
barrel distortion. Pin cushion distortion, found in some tele-photo lenses, is the expansion of the light ray bundle
as a function of angle from the optical axis. Lenses incorporating aspherical elements can be designed to have
significantly less distortion, often by several orders of magnitude, but the remaining residual distortion is no
longer monotonic and is known as moustache distortion.

Distortion in images affects any measurements made from those images. Straight lines may appear curved,
and measurements such as angular separation of two image points or triangulation of a point visible to multiple
cameras will be adversely affected.

The definitive lens distortion model is that of Brown1,2, which is a polynomial expansion of Conrady’s model3.
Brown’s model, given by 1, allows one to calculate with the desired accuracy, the corresponding undistorted
point (i.e. that which would have been produced by a pinhole camera) for any point in the distorted image.
The accuracy of the model is a function of the number of radial and tangential parameters that are determined,
and whether an optimal distortion centre is found. In order to create a distortion-free image, however, the
inverse operation is required: for each (integer located) pixel in the undistorted image, the (probably non-integer
located) pixel in the distorted image is required. This allows one, after interpolation in the distorted image, to
generate the distortion-free image without gaps or holes. This process, known variously as undistortion, inverse
distortion and distortion correction, additionally allows one to determine the image coordinates of a reference
determined by external means such as RADAR or geo-location, after the provided vector is projected into the
focal plane and scaled by the pixel dimensions.
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where:

(xu, yu) =undistorted image point,

(xd, yd) =distorted image point,

(xc, yc) =centre of distortion,

Kn =Nth radial distortion coefficient,

Pn =Nth tangential distortion coefficient,

r =
√

(xd − xc)2 + (yd − yc)2, and

. . . =an infinite series.

As Brown’s model contains no precise inverse for non-trivial parameter sets, various methods of approximating
it have been investigated. Candocia4 presented an alternate scale preserving distortion function, which had an
analytical inverse requiring the solving of two fifth-order polynomials. Mallon and Whelan5 used a Taylor series
expansion of a Brown model containing only a few coefficients. De Villiers et al6 fitted a high-order Brown model
to map the inverse distortion by using the pseudo-undistorted points created during distortion characterisation.

1.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are a mathematical approximation to a biological brain. The synaptic con-
nections to other neurons are represented by input weights. The action potential on the soma is represented by
the output of a smooth output bounded function of the difference between the sum of the weighted inputs and
an internal threshold. Standard texts (e.g.7) can be consulted for more details.

Feed-forward ANNs are a standard architecture7 wherein the neurons are arranged in layers. The input
neurons each receive one of the inputs and distribute it to the next layer. Each of the neurons in the subsequent
layers accept as inputs the outputs of all the neurons in the preceding layer. This is called a fully-connected
network. The original method to train a network consisting of only one neuron (sometime called a perceptron)
was developed by Rosenblatt in 19588 and was extended to networks with multiple neurons in multiple layers by
Bryson and Ho in 19699. This is the ubiquitous backwards propagation model, which is analogous to steepest
descent numerical optimisation.

Much work has been done on applying ANNs to computer vision problems, Egmont-Peterson et al.10 provide
a review and classification taxonomy for their application. Camera calibration falls within their pixel-level pre-
processing category. Memon and Khan11 trained an ANN to produce the 3-dimensional position of a point given
the matched image coordinates of the points as observed by a stereo camera pair. Do12 used neural nets both
to model the entire system as well as to model only the deviation from the pinhole camera model. Ahmed et
al.13 used an ANN to determine the intrinsic and extrinsic calibration parameters of a camera, excluding lens
distortion effects which were assumed either insignificant or accounted for upstream.

1.3 Contribution

This work is an extension of previous work published by the authors.14 Earlier work on modelling inverse distor-
tion did not consider neural networks. Previous work using ANNs for camera calibration either did not consider
the effect of lens distortion or implicitly modelled distortion only in the direction of distorted to undistorted
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domains. This work investigates the applicability of modelling inverse distortion using ANNs and the residual
pseudo-undistorted points created during normal lens distortion procedures.

The rest of this paper is divided as follows: First, the equipment and methods used to capture the data are
described in section 2. Then the architectures of the neural networks that were evaluated are discussed in section
3. Section 4 describes the algorithms used to train the neural networks. Section 5 provides the results of the
training of the neural networks. Section 6 discusses and places the results in context. Finally, section 7 provides
some concluding remarks.

2. DATA CAPTURE METHOD

The data used for this work is the same as the authors’ earlier work.14 This section is repeated for convenience.
A 46” high definition liquid crystal display (LCD) television was used to create checker patterns to provide data
for the distortion characterisation. This allowed many thousands of checkers to be generated and captured,
whilst their exact positions were accurately known. A Prosilica GE1600 machine vision camera with a Schneider
4.8mm Cinegon lens was used to observe the LCD screen. The LCD and camera were arranged such that the
LCD was as far away as possible, but still subtended the camera’s entire field of view (FOV). The Schneider
lens exhibited classical monotonic barrel distortion with a horizontal FOV of approximately 82◦. The GE1600
had a resolution of 1600 by 1200 and 2/3 inch CCD. The ambient lighting was carefully controlled and simple
background elimination performed by subtracting intermittently refreshed reference frames with a blank LCD.
This ensured that erroneous reflections in the LCD did not adversely affect the data. Figure 1 provides a raw
uncorrected picture captured with the GE1600 and 4.8mm Cinegon lens. Note how the building on the left, the
column on the right and the fence at the bottom all appear to be curved.

Figure 1. Original distorted image

The checkers were found in the camera’s image with sub-pixel accuracy using Lucchese and Mira’s15 method
of finding the saddle point of the 6 coefficient second-order surface of intensity versus X and Y. This surface
was fitted in a least squares sense in a window centered around the initial roughly found checker position. This
refined position was further refined, using the same method and centering the window around the previous refined
position to ensure that the final window was indeed centered (to the nearest pixel) around the refined checker
position for maximum accuracy.

The distortion characterisation, and corresponding calculation of the pseudo-undistorted points, was per-
formed as described by de Villiers et al.6 using Brown’s model with five radial coefficients, three tangential
coefficients and an optimal distortion center.
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3. NEURAL NETWORK ARCHITECTURES

All the ANNs considered in this work were of the fully connected feed forward type. A variety of sigmoidal
activation functions were evaluated. The logistic function given by Eq. 2 has an output ∈ (0, 1). The arctan
output (Eq 3) is bounded by (−π/2, π/2). The third function considered, the hyperbolic tangent (Eq 4), is
∈ (: −1, 1). Figure 2 plots the output of the functions on a common axis.

Output =
1

1 + eth−
∑n

j=1(wjij)
(2)

Output = tan−1
( n∑

j=1

(wjij)− th
)

(3)

Output = tanh
( n∑

j=1

(wjij)− th
)

(4)

where:

n = the number of inputs to the neuron,

wj = the weight associated with input j,

ij = the jth input, and

th = the neuron’s threshold.

Figure 2. Plot of the sigmoidal functions considered.

The output of the ANN’s were scaled such that only the middle 80% of the neuron activtion function range
corresponded to pixel on the imager, i.e. 10% corresponds to pixel 0 and 90% corresponds to pixel 1600 (1200)
for the horizontal (vertical) correction. Pairs of ANNs were evaluated. each with single outputs correcting either
the horizontal or vertical corrections as well as single dual-output ANN. Following the results of earlier work14,
ANNs with 3 hidden layers (HL) were not evaluated, only 1 and 2 HL ANNs were. Single HL ANNs had either
5, 10 or 15 neurons in the HL. Dual HL ANNs had 5, 6 or 8 neurons in each HL.

4. ALGORITHM DESCRIPTIONS

For the first two sets of evaluations described in Section 3, a multi-start strategy was implemented. Twenty net-
works were initialised with random weights and thresholds, and were then trained using the standard backwards
propagation technique.9 An adaptive learning rate (initially set to 0.1) was employed whereby the learning rate
was increased by a multiplicative factor of 1.01 (up to a maximum of 1.0) if two of the past three epochs resulted
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in an improvement. The learning rate was decreased by the same multiplicative factor to a minimum of 0.05
if two of the past three epochs showed a worsening. The ANNs were trained using two thirds of the data, and
evaluated on the last third. As the data was captured sequentially from top left to bottom right of the camera’s
FOV, the training and evaluation data were interleaved. Specifically the ANNs were trained on samples 3n+ 0
and 3n + 1 and evaluated on 3n + 2. All the image coordinates were scaled by the imager’s resolution to be in
the normalized range (0, 1). This implies that the distorted image coordinates were ∈ (0, 1) but undistorted ones
corresponding to distorted points on the periphery were not.

The backwards propagation algorithm iterates sequentially through each input-output set in the epoch and
makes a small adjustment. For the third series of evaluations, it was decided to determine what adjustments
should be made to the neuron’s parameters to make a global improvement for the entire epoch. To do this, ANNs
of the specified architecture were trained and discarded using the procedure just described, until one achieved an
error of 0.002 or better. Thereafter, the Leapfrog local optimiser16 was used (with a centered difference gradient
estimation) to refine the weights. This implies 2 evaluations of the epoch per weight and threshold in the ANN
in order to determine what step to take to improve the network. A total of 102 epochs are thus required for a
network with two inputs, two hidden layers of 5 neurons and a single output. The metric that was minimized
was the Root of the Mean Square (RMS) error of the difference between the actual distorted image coordinate
and the one that the ANN produced based on the pseudo-undistorted image coordinate.

As can be seen in Figure 2 the activation functions have different output ranges. It had previously been
noted14 that using only a subset, such as the inner 80%, of the range should be used to represent the undistorted
pixel space. This allows points which are too far off the optical axis to fall on the CCD to not be mapped
erroneously onto the image.

5. RESULTS

All timings in Tables 1, 2 and 3 were performed on the same computer. It had an Intel i7-960 CPU, and an
NVidia GTX480 GPU. The CPU based parallelisation was implemented using openMP∗ and the GPU code was
written in CUDA†.

Table 1 provides the results of the parallelisation of the neural network training and refinement algorithms.
The effect of the precision of the floating point weights on the final results is displayed. The networks trained
have two hidden layers, each with 5 neurons and using the logistic activation function (Eq. 2). The results are
thus comparable to the authors’ previous work,14 except the suggested output scaling has been implemented.
Each evaluation consisted of training 20 ANNs to correct only the horizontal distortion correction. The RMS
error in pixels for each ANN was averaged and is presented along with the RMS error of the best ANN. The
timing is the average time taken to train an ANN of that type.

Table 1. CPU vs. GPU and single vs. double precision comparison.

Backwards Propagation Optimised Time per
Processor Precision Average Best Average Best ANN

Pix (RMS) Pix (RMS) Pix (RMS) Pix (RMS) sec

CPU, single thread double 10.14 1.50 2.83 0.83 1892
CPU, single thread single 11.19 1.87 8.02 1.44 1754
CPU, multi-threaded double 10.21 1.04 2.95 0.75 279

GPU double 8.81 1.14 3.25 0.68 152

Table 2 provides the results of the comparison of the different activation functions. It contains both pairs
of single-output ANNs (used in combination to perform a total correction) as well as dual-output ANNs, all of
which were refined on the GPU. As it was anticipated that more neurons would be required for one ANN to

∗openMP (www.openMP.org) is API for multi-platform shared-memory parallel programming in C/C++ and Fortran.
†CUDA (www.nvidia.com/object/cuda home.html) is a parallel programming architecture developed by NVidia.

Proc. of SPIE Vol. 8056  80560L-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/07/2014 Terms of Use: http://spiedl.org/terms



effectively encapsulate the horizontal and vertical corrections, ANNs with 6 and 8 neurons per HL were tested
in addition to the prior ANNs with 5 neurons per HL. Each ANN architecture/activation function combination
had 20 ANN’s trained. The RMS error in pixels for each ANN was averaged and is presented along with the
RMS error of the best ANN. As before, the timing is the average time taken to train an ANN of the that type.
The combined column is the total error produced by two single output ANN’s and its time is the sum of the
times for the two ANNs. The best results have been highlighted, for ease of reference.

Table 2. Activation function and ANN architecture comparison.

Single output ANNs Dual output
Hidden Activation Horizontal Vertical Combined ANN
Layers Function Ave Best Ave Best Ave Best Time Ave Best Time

Pix Pix Pix Pix Pix Pix sec Pix Pix sec

logistic 3.25 0.68 1.47 0.64 3.47 0.93 411 1.91 0.91 304
5x5 arctan 1.56 0.60 0.89 0.31 1.80 0.68 328 1.01 0.59 303

tanh 0.76 0.37 0.57 0.25 0.95 0.45 394 0.76 0.56 329

logistic 1.61 0.46 1.30 0.70 2.07 0.84 543 1.37 0.81 342
6x6 arctan 0.74 0.59 0.93 0.32 1.19 0.67 423 0.96 0.46 275

tanh 0.67 0.39 0.49 0.31 0.83 0.50 497 0.64 0.46 394

logistic 0.64 0.34 1.22 0.50 1.38 0.60 929 1.03 0.51 513
8x8 arctan 1.26 0.54 0.56 0.23 1.39 0.59 580 0.62 0.31 526

tanh 0.68 0.51 0.43 0.30 0.80 0.59 664 0.57 0.44 647

Table 3 provides equivalent data to Table 2 but uses ANNs that have only one HL. Only the total pixel error
for two single output ANNs is presented. Each ANN architecture/activation function combination had 20 ANNs
trained. The RMS error in pixels for each ANN was averaged and is presented along with the RMS error of the
best ANN.

Table 3. Results using a single HL ANN

ANN Neuron 5 Neurons 10 Neurons 15 Neurons
architecture activation Ave Best Time Ave Best Time Ave Best Time

function Pix Pix Sec Pix Pix Sec Pix Pix Sec

Two logistic 8.46 2.17 245 2.03 1.30 463 1.98 1.07 731
single-output arctan 24.2 21.3 142 29.9 27.4 291 29.9 28.3 478

ANNs tanh 10.6 10.4 91 10.4 10.4 266 10.0 2.83 236

One logistic 4.28 1.21 159 1.67 1.16 286 1.38 0.73 421
Dual-output arctan 15.4 13.1 161 17.6 16.0 290 17.7 3.70 399

ANN tanh 2.26 2.16 61 0.89 0.57 160 2.38 2.02 219

6. DISCUSSION OF RESULTS

Table 1 provides the results of the attempts at speeding up the process of training and refining the neural
networks. This was done to facilitate more experiments and increase the rigour with which they could be
performed. It can be seen that switching from double to single precision resulted in only a marginal performance
gain, outweighed by the decreased accuracy of the ANNs. Both the CPU and GPU multi-threaded applications
(only the metric used for numeric refinement was parallelised, as pure Backwards propagation is not parallelisable)
yielded significant performance gains in training times. The achieved accuracy of the ANNs was not degraded,
with the results having similar distributions. All further evaluations were then done using double precision and
GPU based refinement (which requires a GPU supporting CUDA compute capability 1.3 or above).
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(a) Image undistorted as per de Villiers et al.6 (b) 10 pixel error ANN corrected image.

(c) 5 pixel error ANN corrected image. (d) 2 pixel error ANN corrected image.

(e) Best single HL ANN (0.57 pixel error) (f) Best dual HL ANN (0.31 pixel error)

Figure 3. Distortion corrected images.
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From Table 2 it can be seen that, in almost all cases, a single dual-output ANN outperformed two single-
output ANNs. This is true both for the average accuracy of the ANNs and for the best performing ANNs of
each type. Dual-output ANNs are also quicker to train than the associated total time for a pair of single-output
ANNs.

In terms of activation functions, the logistic function (Eq. 2) is in all cases the worst performing of the three
functions. The hyperbolic tangent (Eq. 4) in all cases had the best average accuracy of the three activation
functions. The arctan (Eq. 3) activation function had best results that were similar to or better than the
hyperbolic tangent. However it was observed that several of the ANNs would converge to particularly poor
results, and so it seems the increased range of arctan makes these ANNs more sensitive.

Figure 3 helps place these numerical results in perspective. Figure 3(a) is the reference distortion corrected
image, and portrays the effect we are trying to achieve. Figures 3(b), 3(c) and 3(d) provide the results of images
corrected to within 10, 5 and 2 pixels RMS over the entire image. Figures 3(e) and 3(f) provide the images
obtained with the best single HL and dual HL ANNs obtained in this work. Note how the building on the left,
the column on the right and the fence at the bottom are now all projected onto straight lines.

The single HL ANNs, whose results are given in Table 3, provide contrasting results. While a single network
performing both horizontal and vertical corrections continues to provide a better fit (with fewer computations),
the most accurate activation function is now the sigmoidal function (with the exception of a 10 neuron hyperbolic
tan single HL network’s which had the best results on average and overall). ANNs using the arctangent function
performed particularly poorly, with most ANNs being trained by backwards propagation into a local minima
that the leapfrog refinement could not significantly improve.

Table 4 places the results obtained in context with established and recently published papers. The first six
rows correspond to the best results achieved, regardless of the number or neurons or hidden layers, for ANNs
using different activation functions and numbers of outputs. The second section of the table gives the results
achieved in the authors’ previous work and from using high-order brown models6 to create Figure 3(a). The
final section provides, for comparison, results published in literature. Mallon and Whelan’s camera resolution
was inferred from their paper and the imager size assumed to be 2/3 inch.

It can be seen the relative to the author’ prior work on neural modelling of inverse distortion14 a further
decrease in the error 63.5% has been obtained. This makes the work directly comparable to some of the most
accurate algorithms published.

Table 4. Distortion results comparison

Correction Resolution Pixel Pixel Micron
Type Horiz Vert Size (μ) Error Error

2 single-output logistic ANNs 1600 1200 5.5 0.60 3.30
2 single-output arctan ANNs 1600 1200 5.5 0.59 3.23
2 single-output tanh ANNs 1600 1200 5.5 0.45 2.48
1 dual-output logistic ANN 1600 1200 5.5 0.51 2.81
1 dual-output arctan ANN 1600 1200 5.5 0.31 1.71
1 dual-output tanh ANN 1600 1200 5.5 0.44 2.42

de Villiers14 1600 1200 5.5 0.85 4.68
de Villiers6 1600 1200 5.5 0.30 1.65

Mallon5 1024 768 8.6 0.42 3.61
de Villiers6 667 502 13.15 0.013 0.17

7. CONCLUSIONS

By parallelising the local refinement of the ANN weights, a total speedup of over 12 times was yielded without
decreasing the accuracy of the resulting networks.

If only one or a few ANNs can be trained, a dual output 2 hidden layer network with between 6 and 8 neurons
in each layer and a hyperbolic tangent activation function should be used, as these have the lowest average results.

Proc. of SPIE Vol. 8056  80560L-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/07/2014 Terms of Use: http://spiedl.org/terms



If one can afford to train many ANNs the arctangent activation function will yield results better or similar to
the hyperbolic tangent ANNs. If one is constrained to a single layer, the sigmoidal activation function yields the
most predictable and generally best results.

It has been shown that artificial neural networks can effectively undistort an image by modelling the in-
tractable inverse distortion. The results achieved are only 3% worse than the most accurate algorithms available
when they are performed on the same apparatus.
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