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Abstract—A variety of lens distortion modelling techniques
exist. Since they make use of different calibration metrics it
is difficult to select one over the others. This work aims to
compare lens distortion modelling techniques and calibration
patterns in a unified and objective manner. A common image
dataset is captured along with physical measurements and is
used to quantify the photogrammetric accuracy of the different
calibration techniques. Multiple calibration patterns and sizes are
tested and compared to results obtained with industry standard
calibration methods. Several sub-pixel accurate methods of find-
ing calibration points in images are evaluated. Improvements of
20% over the method used in OpenCV are consistently obtained.
This work opens up the possibility for improved distortion
characterisation in the scientific community.

I. INTRODUCTION

There exists a number of lens distortion characterisation
methods, each of which can make use of a number of calibra-
tion patterns. Each distortion characterisation technique makes
use of a different metric and this hinders objective comparisons
and selection between the different techniques. The aim of this
work is to determine the calibration pattern which yields the
best distortion characterisation in terms of 3 dimensional (3D)
measurements when using a single camera. To put the results
of this work into context, precision techniques are compared
to popular methods for lens distortion characterisation.

A. Lens distortion characterisation techniques

The purpose of lens distortion characterisation is to ensure
that straight lines in the real-world project into straight lines
in image space, shown by figures 2(b) and 3(b) versus figures
2(a) and 3(a) respectively. The majority of the techniques are
based on the plumb-line approach, first described by Brown in
1971 [1]. This involves the numerical refinement of a chosen
subset of two infinite series (for radial and tangential distortion
respectively) as described in the Brown/Conrady model [2], [3]
given in eq. 1.
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where:

(hu, vu) = undistorted image point,
(hd, vd) = distorted image point,
(hc, vc) = centre of distortion,

Kn = Nth radial distortion coefficient,

Pn = Nth tangential distortion coefficient,

r =
√

(hd − hc)2 + (vd − vc)2, and
. . . = an infinite series.

B. Calibration patterns

The purpose of calibration patterns is to provide measurable
points which are known to be collinear in the object space.
The accuracy with which these points can be found in the
image directly affects the accuracy of the lens distortion
characterisation. To this end, it is necessary to obtain these
points with a level of accuracy higher than the discrete pixel
sampling of the image plane. This work only considers calibra-
tion patterns whose reference points can be determined with
sub-pixel accuracy. Checker boards are an extremely popular
choice (e.g. the open computer vision (OpenCV) library [4],
Caltech Camera Calibration Toolbox [5]) as the intersections
can be found extremely accurately by finding the saddle point
of the intensity profile about the intersection as described by
Lucchese and Mira [6] and expanded upon by Chen and Zhang
in [7]. Circles are also a popular choice since the centres can
be found, with high accuracy, by determining the centroid or
fitting an ellipse. A less conventional method, used by Brown
[1], makes use of straight line grids. This method can provide
a significant increase in the number of points used in the lens
distortion characterisation as many more points can be found
on each line.

C. Axis and notation definition

The mathematical notation used in this paper is as follows:
A 3D vector, Vabc, is a vector from point a directed towards
point b expressed in terms of its projections on orthogonal
coordinate system c’s axes. Vabc is used when the magnitude
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Fig. 1. Axis definition.

of the vector is unknown or unimportant. Tabc represents the
translation or displacement of point b relative to point a.
Rab is a 3-by-3 Euler rotation matrix expressing the rotation
of an orthogonal axis system a relative to (and in terms of
its projections on) an orthogonal axis system b. Individual
elements of 3 dimensional vectors are referred to as x, y or z
whereas 2 dimensional (2D) vector’s elements are referred to
as horizontal (h) and vertical (v) to avoid confusion. Figure
1 defines the axis system used and the directions of positive
rotation.

D. Paper organisation

The rest of this paper is organised as follows: section II de-
scribes the data capture methods for distortion characterisation
and comparison. Section III details the methods used to com-
pare the distortion characterisations in an unbiased manner.
Thereafter, section IV provides a summary and discussion on
the results obtained for each of the distortion characterisation
methods. Finally, section V places the results of this work in
context.

II. DISTORTION CHARACTERISATION METHODS

This section describes the camera equipment and methods
used to capture and process data in order to calibrate it.

A. Equipment specification

A 1600-by-1200 Prosilica GE1660 Gigabit Ethernet ma-
chine vision camera was mated with a Schneider Cinegon
4.8mm/f1.4 lens for use in this work. This lens has an 82◦

horizontal field of view (FOV) with significant lens distortion
and high modulation transfer function (MTF) making it par-
ticularly suitable for this work. The framework for live image
transformation (flitr) [8] was used for the image capture and
processing.

B. Distortion Calibration Patterns

A 46” Liquid Crystal Display (LCD) screen was used to
display calibration patterns, and assumed to be sufficiently
planar. This allowed for multiple variants of the calibration

patterns to be tested. By shifting the calibration patterns a
few pixels between captures, approximately 805 calibration
points were captured. The camera was statically placed ap-
proximately perpendicular to the LCD such that the entire
vertical FOV of the camera was occupied by the full extent
of the LCD. This meant that there were two blind spots at the
horizontal extremes of the LCD as the camera had 4:3 aspect
ratio compared to the LCD’s 16:9 ratio. In order to aid in
the removal of background noise and ambient lighting effects,
the calibration pattern capture was interleaved with capturing
images of a blank LCD. Three different calibration patterns
were considered, namely horizontal and vertical straight lines,
checker intersections and circle arrays. Multiple sizes of the
latter two patterns were captured in order to evaluate the effect
of the calibration pattern size on calibration accuracy.

C. Pre-processing
This section details the distillation of raw captured image

data into a set of accurate pixel positions for each of the
reference marks for each calibration pattern.

Since a single line was captured at a time, simple thresh-
olding of the background subtracted image yielded a dense
list of all camera pixels on each line. Due to non-alignment
of camera pixels and the non-perfect focus and non-zero line
width of the line on the charge coupled device (CCD), the line
in the captured image was several pixels wide. This meant that
several hundred thousand calibration points were captured for
the line patterns.

Two sub-pixel accurate methods for determining the inter-
section of checkers were evaluated, these being the window
surface fitting method of Lucchese and Mira [6] and the
Hessian matrix-based method proposed by Chen and Zhang
[7]. Since the LCD coordinates of each checker are known in
addition to the determined image coordinates of each checker
it is possible to obtain many dozens of checkers for each row
and each column as captured checkers in subsequent LCD
frames can overlap physically.

The centre of the circle is the desired calibration image
point for circle arrays. Two methods to find this point were



(a) Example distorted image. (b) Image undistorted as per [9].

Fig. 2. Planar Reference Pattern, with Reference points marked.

evaluated, with the first being the centroid of the background
subtracted circle image. The second is the numerical fitting
of an ellipse to the determined set of pixels constituting the
circle by minimising equation 2 (Leapfrog [10] was used for
the minimisation):

metric = c0πab+ c1(CS − ES) + c2(WS − 2ES) (2)
where

cn = the nth weighting term,
CS = sum of intensities from centroid calculation,

WS =
∑

h,v∈W

I(h, v),

I(h, v) = image intensity at 2D coordinate (h,v),

ES =
∑

h,v∈W

 I(h, v) if CR 6 ER,
αI(h, v) if ER < CR 6 ER+ 1,

0 if CR > ER+ 1,

CR = ‖ < h, v > − < Eh, Ev > ‖

ER =

√
a2b2

(bcos(θ))2 + (asin(θ))2

α = (1− (CR− ER))
W = h ∈ (Eh − (a+ 3), Eh + (a+ 3)),

v ∈ (Ev − (a+ 3), Ev + (a+ 3))

(Eh, Ev) = centre of ellipse,
a = major axis of ellipse,
b = minor axis of ellipse,
θ = angle of major axis from horizontal.

D. Precision distortion characterisation

The distortion characterisation method used in this work
is that described by de Villiers et. al [11]. As suggested the

Leapfrog algorithm [10] was used, as it is robust to errors
and finds “low-local” minima and not merely the closest
local minimum. With reference to eq. 1, five radial and three
tangential parameters were determined as well as the optimal
distortion centre. A genetic algorithm, implementing elitism
and some “hill climbing” was run for 300 generations of 300
individuals to provide a robust starting point for Leapfrog to
numerically refine. Thereafter all the points that had an error
of more than three standard deviations from the mean were
removed, and the Leapfrog algorithm was run again to further
refine the distortion parameters.

The distortion measure that was minimised is that given
in [11], namely the Root Mean Square (RMS) perpendicular
distance of all the points on each row/column (of calibration
reference points) from the best-fit straight line through the
points that exist as part of that row/column. The calibration
patterns and the determination of their reference points is
described is sections II-B and II-C respectively.

E. OpenCV calibration

To better place this work in context the camera was also
calibrated using the popular OpenCV library [4]. This cali-
bration was performed by capturing 15 images of a checker
board which had a total of 54 checker intersections, for a total
of 810 intersections. The 15 images were chosen such that a
subset of them covered the entire FOV of the camera with
the checkerboard approximately orthogonal to the image axis
and upright. The remainder of the dataset contained images
of the checkerboard at non-orthogonal positions. Figure 3(a)
contains one of the non-orthogonal images. As can be seen
from figure 3(b), which contains the image as undistorted
by OpenCV, the characterisation was successful. An average
re-projection error of 0.770 pixels as well as the two radial
and two tangential coefficients together with the distortion
centre (see eq. 1) and focal length were returned to completely



(a) Example OpenCV calibration image. (b) OpenCV undistorted image.

Fig. 3. OpenCV [4] calibration.

characterise the distortion.

III. COMPARISON OF DISTORTION CHARACTERISTICS

A suitable metric is required in order to objectively compare
the use of different calibration patterns and the resulting
lens distortion characterisations. It was decided to compare
a physical measurement, in the real-world, to an estimated
photogrammetric measurement based on the distortion cal-
ibrations. To facilitate a monocular camera measurement,
discernible points that exist in a 2D plane were required.

Fig. 4. Calculated camera positions relative to planar reference.

A common dataset was gathered, consisting of nine images
of a planar reference target as observed from different direc-
tions. Figure 4 shows the calculated position for the camera
relative to the planar reference for each calibration/image pair,
5 DOF are shown as roll is not indicated. The end of the line
indicates the translation of the camera and the line represents
the optical axis extended to intersect with the planar reference.
The reference points in each image were manually located.
Distinct points were chosen such that the locations could be
determined with a high level of accuracy. Figure 2(a) provides
a sample of this dataset and figure 2(b) highlights the 6 points

used and also shows the result of the custom lens distortion
correction. These 6 points allow for a total of 15 unique pairs
with corresponding physically measured distances. Four addi-
tional reference checker intersections, whose relative positions
are known, were placed on the planar reference to facilitate
the pose estimation of the camera, as required to perform the
monocular measurements. The subsequent sections describe
the mathematical mechanics involved in the metric.

A. Pose estimation

Pose estimation was performed by minimising the offset be-
tween two bundles of vectors. The first vector bundle is created
from the image data by transforming the pixel positions of the
selected points in the planar reference. This is done using the
distortion parameters and the focal length of the lens. The
second vector bundle is created by hypothesising the 6 degree
of freedom (DOF) position of the planar reference relative to
the camera and calculating the vectors to the selected points.
This method is sensitive to both translation and rotation as
detailed by de Villiers [11]. A genetic algorithm, with 1000
generations of 1000 individuals, was used to generate an initial
6 DOF position for the Leapfrog algorithm to further refine.

B. Planar projection

The pose estimation information was used to project the
location of the pixel position of the selected point in the image
plane into the plane of the planar reference. This process is
described mathematically as:

Trpr = Vcpr
Tcrrx
Vcprx

+ Tcrr (3)

where

Tcrr = RT
rcTcrc,

Vcpr = RT
rcVcpc,



Vcpc =

 Focal Len
(Ph − Iuih)pix w
(Pv − Iuiv )pix h

 ,
(Ph, Pv) = the principal point,
(Iuih , I

u
iv ) = the undistorted pixel position of planar

reference point i,
pix w = the width of the pixels on the camera’s CCD,
pix h = the height of the pixels on the camera’s CCD,
Rrc = rotation of the planar reference to the camera,
Tcrc = the spatial offset of the planar reference origin

relative to the camera, and
Trpr = the distance from the planar reference origin to

the point.

C. Comparison metric

Equation 4 provides the comparison metric. It is the RMS
error over all possible pairs of planar reference points of the
difference between the physically measured distance and the
corresponding distance as calculated from the projected image
points (Eq. 3):

metric =

√√√√ 2

n2 − n

n−1∑
i=1

n∑
j=i+1

(
‖Trpir − Trpjr‖2 −Di,j

)
(4)

where
n = the number of planar reference points,

Di,j = the measured distance between points i and j,
Trpir = projection of point i as per Eq. 3, and
Trpjr = projection of point j as per Eq. 3.

IV. RESULTS

This section provides the results of the experiments and
discusses the results.

Table I provides the results of the calibrations performed
for the various lens distortion calibration patterns discussed in
section II. Both the initial error and the resultant error after
characterisation are given for comparison. The error values (in
units of pixels RMS) are described in section II-D and [9]. The
circle array patterns have two sets of values. The first is the
characterisation when using the centroid of the captured circle,
and the second when using the centre of the fitted ellipse (Eq.
2). The square patterns also have two sets of values: “L&M”
refers to results obtained using [6] whereas “C&Z” indicates
the results for checker intersections found by using [7].

Table II provides the 3D projection accuracy of each cali-
bration method. This metric is described in detail in section
III, and compares the photogrammetric measurements between
the manually selected image points of the planar reference (see
figure 2(b)) to their physically measured displacements. The
RMS error for each of the 9 images taken from the planar

1OpenCV average reprojection error, not the metric described in section
II-D

TABLE I
DISTORTION METRICS

Pattern Measurement Initial distortion Optimal distortion
type method (pixels RMS) (pixels RMS)

Open CV Calibration1 - 0.770
Circle, Centroid 347.645 0.081
size 10 Ellipse 347.785 0.088
Circle, Centroid 335.622 0.078
size 25 Ellipse 335.510 0.142
Square, L&M 386.059 0.256
size 15 C&Z 340.954 0.082
Square, L&M 386.342 0.103
size 25 C&Z 314.710 0.081
Square, L&M 386.695 0.099
size 50 C&Z 251.682 0.060

Lines 290.917 3.026

reference is provided. The RMS error calculated over the first
5 images as well as all 9 images is provided for comparison.
The interpretation of the two leftmost columns is the same as
for table I.

The initial distortion values in table I vary slightly. This is
due both to the accuracy with which the patterns are captured
and inherent characteristics of the capturing process. The
circle capture methods discard patterns that touch the image
edges, ergo more of the smaller circles at the image periphery
(which has higher distortion) were captured. Similarly, the
implementation of Chen’s checker intersection finding method
[7] did not find intersections as close to the periphery as did
the Lucchese [6] implementation.

In table II there is a clear increase in error moving from left
to right. This can be attributed to increased obliqueness with
which the planar logo was viewed. Furthermore, the limited
depth of focus decreased the accuracy with which the man-
ually tagged image points were located. This resulted in less
accurate pose estimations and photogrammetric measurements.

The results indicate that a 25 pixel checker pattern located
with the method described in [7] produced the best results.
This method performs consistently well over the range of
checker sizes. The same cannot be said for the method
described in [6]. This method relies on fitting a curve to
the intensity profile about the checker intersection. Using a
larger checker ensures that the window of pixels used for
the curve fitting will never extend beyond the bounds of the
checker. This is evident in table I where a better distortion
characterisation is achieved when a larger checker size is
used. Furthermore, this trend propagates through to the results
presented in table II. The 50 pixel checker outperforms the
smaller checkers when considering the method of [6].

The circular calibration pattern results indicate that using
the ellipse fitting method with a larger circle produces the best
results. The reduction in the data obtained with smaller circles
hampers the ability of the ellipse fitting process to accurately
determine the centre of the ellipse in the image. As such,
there exists no discernible difference in accuracy between the
ellipse and centroid methods when smaller circles are used.
With larger circles, however, the true centre of the circle will



TABLE II
3D ERROR OF CALIBRATION PATTERS

Pattern Measurement Error (mm) for image Images 1-5 Global
type method 1 2 3 4 5 6 7 8 9 error (mm) error (mm)
Open CV Calibration 3.48 3.91 3.19 2.67 3.36 4.92 5.19 3.82 8.17 3.66 4.58

Circle, Centroid 2.40 3.17 3.58 3.59 3.87 3.35 7.00 3.63 5.99 3.36 4.29
size 10 Ellipse 2.44 3.26 3.84 3.38 3.20 3.52 7.03 4.30 5.63 3.26 4.28
Circle, Centroid 2.66 3.58 4.15 2.81 3.12 3.42 8.95 4.72 6.45 3.31 4.84
size 25 Ellipse 2.38 3.40 3.10 2.76 3.33 2.94 5.09 3.94 6.71 3.02 3.95
Square, L&M 2.59 3.32 2.64 2.41 3.13 3.22 5.97 4.86 6.49 2.84 4.11
size 15 C&Z 2.37 3.26 3.09 3.23 3.57 3.19 4.95 3.70 6.72 3.13 3.98
Square, L&M 2.51 3.47 3.41 2.71 3.01 3.45 4.97 3.85 6.31 3.05 3.91
size 25 C&Z 2.46 3.34 3.02 3.00 3.27 3.23 4.73 3.73 6.28 3.03 3.83
Square, L&M 2.62 3.42 3.49 2.71 3.07 3.22 5.61 3.80 6.42 3.08 4.01
size 50 C&Z 2.40 3.34 3.04 3.19 3.47 3.18 4.97 3.62 6.27 3.11 3.88

Lines 3.79 5.06 5.55 2.54 4.31 3.31 5.47 9.31 7.02 4.38 5.5

not coincide with the centre of the ellipse due to the non-
linear radial compression introduced by the lens distortion as a
function of the distance from the principal point. Additionally,
due to the non-perfect orthogonality of the camera to the LCD,
the circle pattern will be projected onto the CCD resulting
in an ellipse. This results in a perspective induced difference
between the projected centre of the circle, and the projection
of the centre of the ellipse. These two effects therefore place
an upper limit on the circle size.

The line calibration patterns produced the worst results
overall. Coupled with the significant increase in computational
requirements (due to the increased number of captured pixels)
during the distortion characterisation phase, this makes the
method the least desirable. An initial inspection of table I may
lead one to believe that this was apparent. The poor distortion
result of the line calibration in table I is due to the line width
being greater than a single pixel on the CCD, as mentioned
in section II-C.

A direct comparison between the results of table I is not
meaningful as it is not a direct indication of the photogrammet-
ric accuracy of the camera. This is evident in the comparatively
poor distortion characterisation of the 25 pixel circles using
ellipse fitting. This characterisation performed the best overall
for the first five images (as shown in table II) and performed
well when all the images were considered, contrary to the
results presented in table I. Similarly, the calibration results
would lead one to believe that characterisation of checkers
size 15 pixels using Lucchese and Mira’s method [6] would
be 3 times worse than a majority of the other calibrations.
This is not the case, as seen in table II. The same is true for
the calibration using lines.

The OpenCV results are also presented in table II. They
compare less favourably to the results obtained with the larger
calibration patterns. When only the first 5 images are con-
sidered, OpenCV performs 29% worse than the best method.
This drops to 20% when all nine images are considered. This
comparison is pertinent as the data used for the OpenCV cali-
bration (an example of which is shown in figure 3(a)), contains
checkers of similar image size to the 50 pixel checker. Both
OpenCV and the other distortion characterisations determined

an optimal focal length for the lens, this value differed slightly
from the manufacturer’s claimed value.

V. CONCLUSIONS

The distortion metric is not indicative of photogrammetric
accuracy.

Calibration with checker patterns yields better accuracy than
using circular or line patterns. The method proposed by Chen
and Zhang [7] is more robust to different checker sizes which
leads to more consistent and accurate distortion characterisa-
tions when compared to the Lucchese and Mira [6] approach.
Ellipse fitting provides better distortion characterisations than
using the centroid when larger circles are used.

Accuracies of 20% improvement over the popular OpenCV
method were obtained, with all but two calibration patterns
leading to results superior to those of OpenCV.
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