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Abstract

The uniformly most powerful invariant test is derived for
the problem of detecting a signal with unknown location
in a sequence of noise. This test has the property that for
each possible signal location it has the greatest power of
all tests which are invariant to cyclic permutations of the
observations.

The test is compared to the generalised likelihood ratio test,
which is more typically used for this detection problem.
Monte-Carlo simulations are used to show that the powers
of the two tests are comparable, and there is little loss in-
volved in choosing whichever is simpler.

1 Introduction

The problem of detecting a known signal with unknown lo-
cation in a sample of white Gaussian noise has been treated
in the literature. A very simple approach is to use the
magnitude of the Fourier transform of the observation as a
cyclic-shift invariant statistic. However, because this statis-
tic is not maximal, it is invariant to more than just transla-
tions. In fact, Hayes [2] has shown for the discrete case that
even if the equivalence class includes circular shifts, time
reversal, and change of sign of the sequence, the statistic is
still not maximal. The result is suboptimality of any detec-
tor based on this quantity.

A more justifiable approach is to use the generalised likeli-
hood ratio test (GLRT) formalism. Here the signal location
is treated as an unknown parameter, which is estimated and
used in the conventional likelihood ratio test (LRT). This
gives rise to a convolution-style implementation where a
window is moved across the data observation and a rele-
vant statistic calculated for each position. A decision of
target present is then made if any of these statistics exceed
a predefined threshold. Under some fairly general condi-
tions the GLRT is known to be asymptotically optimal [5,
p. 240]. However, from a signal processing perspective

this property is of questionable value since samples are sel-
dom large. Additionally, there is no indication of just how
many samples are required before the asymptotic distribu-
tions become appropriate.

In this paper, an invariance argument is used to derive the
uniformly most powerful invariant (UMPI) test for detect-
ing a signal in a sample of Gaussian noise. The signal is
assumed to be known only to within an arbitrary cyclic per-
mutation of its elements, which for discrete-time signals is
the natural counterpart to unknown location (and shift in-
variance) in continuous time. The performance of this de-
tector is then compared to the GLRT which, since it shares
the same invariances, necessarily has lower power than the
UMPI detector. It is shown that in at least some cases of
practical interest the difference between the two detectors
is negligible. This is a significant result since it validates
the use of the simpler GLRT.

2 Problem formulation

It is assumed that N samples x1 ��������� xN of data are ob-
served. Under hypothesis H0, these samples are inde-
pendent and identically distributed as N

�
0 � σ2 � — a more

general case is considered in Section 8. Under hypothe-
sis H1, some shifted version of the prototype target signal
s1 ��������� sN is added to the noise samples. Since for discrete-
time observations it is natural to regard shifts as cyclic per-
mutations of the elements, under H1 the mean of the obser-
vations is some cyclic permutation of s1 ��������� sN .

The problem is most easily described in vector nota-
tion: letting x �
	 x1 ��������� xN � T , n ��	 n1 �������
� nN � T , and
s ��	 s1 �������
� sN � T , the hypotheses are

H0 : x � n (1)

versus

H1 : x � Pθs � n � (2)



where n : N
�
0 � σ2I � and P is the cyclic permutation matrix

P �

����� 0 ����� 0 1
1 ����� 0 0
...

. . .
...

...
0 ����� 1 0

�����	 � (3)

It can be seen that premultiplying the column vector x by P
cyclically permutes the elements one position downwards:����� 0 ����� 0 1

1 ����� 0 0
...

. . .
...

...
0 ����� 1 0

�����	
����� x1

...
xn 
 1

xn

�����	 �

����� xn

x1
...

xn 
 1

�����	 � (4)

Thus, under H1 the mean of x is some cyclic permutation
of the signal vector s, where the precise order of the per-
mutation is unknown. θ is assumed to be an unknown de-
terministic quantity, and without loss of generality can be
restricted to take on integer values from 0 to N � 1.

3 GLRT solution to the problem

In this section the GLRT for the problem is derived. This
is a typical test which is used in testing under composite
hypotheses, where there are unknown (nuisance) param-
eters in the formulation (in this case the signal location).
Effectively, maximum likelihood estimates are made of the
unknown parameters under each hypothesis, and the result-
ing density functions used in a conventional likelihood ratio
test.

The GLRT statistic is

ΛGLRT 	 x � � ln
maxθ ��
 0 � N 
 1 � p1 	 x � θ �

p0 	 x � � (5)

where p0 	 x � is the probability density function (pdf) of the
observation x under H0, and p1 	 x � the pdf under H1. As-
suming the distributions given in the previous section,

ΛGLRT 	 x � � max
θ ��
 0 � N 
 1 � � 1

2σ2 � 	 x � Pθs � T 	 x � Pθs � � xT x �
� 1

σ2 � max
θ ��
 0 � N 
 1 � 	 Pθs � T x � 1

2
sT s � � (6)

The GLRT is to compare this statistic to a threshold, and
decide H1 when exceeded:

1
σ2 � max

θ ��
 0 � N 
 1 � 	 Pθs � T x � 1
2

sT s � H1��
H0

η

max
θ ��
 0 � N 
 1 � 	 Pθs � T x

H1��
H0

σ2η � 1
2

sT s � (7)

It can be seen that the final quantity on the left of this test
is simply the maximum of the inner products between the
observation x and all possible cyclic permutations of the
signal s. Since the null hypothesis is independent of the
unknown parameter θ, the threshold can be chosen such
that the test has a constant false alarm rate.

4 Invariance of the hypothesis test-
ing problem

There is no uniformly most powerful (UMP) test for the
hypothesis testing problem under consideration here. In
the search for an optimal characterisation, it is therefore
necessary to restrict the class of tests which are to be con-
sidered. For the case of detecting a signal with unknown
location, it is natural to require that the hypothesis test be
constrained such that the same decision be made for arbi-
trarily shifted versions of any given observation. The trans-
formation group considered for the problem is therefore

G ��� g 	 x � � g 	 x � � Pkx � k � 0 ��������� N � 1 � � (8)

This places an equivalence on the observations� P0x �������
� PN 
 1x � , which is natural on account of the
symmetry of the elements of the observations under each
hypothesis. Thus the observations 	 x1 ��������� xN 
 1 � xN ���
	 xN � x1 ������� xN 
 1 ��� ����� � 	 x2 ��������� xn � x1 � are all considered
to be equivalent by the detector. By the way the hypothesis
testing problem has been formulated, it cannot be said that
enforcing this equivalence is restricting the form of the
detector in any unreasonable way.

The testing problem can be seen to be invariant to the
group G . This can be established by considering the dis-
tributions of the observation x under each hypothesis: in
both cases x is MVN with covariance matrix σ2I. How-
ever, under H0 the mean is 0, and under H1 it is one of
the elements in the set � P0s �������
� PN 
 1s � . Consider now
an element gk 	 x � � Pkx of the group G . Since this is a
linear transformation of x, the distribution of y � gk 	 x � is
N
�
PkEx � σ2Pk 	 Pk � T � , where Ex is the expected value of x.

Noting now that 	 Pk � T � PN 
 k � P 
 k,

y : N
�
PkEx � σ2I � � (9)

Thus under H0 the mean of the transformed vector
y is 0, and under H1 it is an element of the set� PkP0s ��������� PkPN 
 1s � ��� P0s ��������� PN 
 1s � . The transfor-
mation gk therefore preserves the form of the distribution
and retains the partition of the parameter space under each
hypothesis. Since this conclusion is valid for all elements
g  G , the hypothesis testing problem is invariant-G .



5 Maximal invariant statistic for the
problem

Before being able to continue, it is necessary to find a max-
imal invariant statistic for the problem. This is a statistic
which has the required invariances, but which also manages
to retain all the useful information contained in the observa-
tion regarding the decision process. One such statistic can
be obtained by defining Pmax 	 x � to be that function which
cyclically permutes the elements of x until the element of
x with the maximum value is in the first position. Note that
for the distributions being considered here Pr � xi � x j � � 0
for i
�� j, so the maximum element of x will be unique with

probability 1.

The statistic Pmax 	 x � is clearly invariant to the group G :
since one of the elements of x is always maximum and
elements of G simply permute the observation x cycli-
cally, Pmax

�
g 	 x � � � Pmax

�
x � for all g  G . Additionally, for

the same reasons, the condition Pmax
�
g 	 x1 � � � Pmax

�
g 	 x2 � �

means that x1 and x2 must be related to one another through
a cyclic shift, so x2 � g 	 x1 � for some g  G . Thus the statis-
tic Pmax 	 x � is maximal.

As explained by Lehmann [6] or Scharf [7], the signifi-
cance of this result is that only functions of the maximal
invariant statistic have to be considered when looking for a
test which is invariant to G .

6 Distribution of the maximal invari-
ant statistic

The method described by Hogg and Craig [3, p. 142] in
relation to order statistics provides a means of determining
the distribution of the maximal invariant. Firstly it is re-
asserted that two elements of x are equal with probability
zero, so the joint probability density of x can be defined to
be zero at all points which have at least two of their coor-
dinates equal. The set A where the probability density of x
is nonzero can then be partitioned into N mutually disjoint
sets:

A1 ��� x � x1 � max 	 x1 ��������� xN � �
... (10)

AN ��� x � xN � max 	 x1 ��������� xN � � �
Thus the set Ai is the set of all points in � N which have no
elements equal, and have xi as their largest element.

Consider the function y � Pmax 	 x � . This defines a 1 � 1
transformation of each of A1 ��������� AN onto the same set B ,
where it so happens that B � A1. For points in Ai, the trans-
formation y � Pmax 	 x � cyclically permutes the elements of

x upwards by i � 1 positions. Thus the inverse function is

x � Pi 
 1y (11)

which simply rotates them back downwards by the same
amount.

Letting Ji be the determinant of the Jacobian of the inverse
transformation corresponding to Ai, it can be seen that

Ji � �Pi 
 1 � � (12)

Now by the structure of Pi 
 1, it is always possible to obtain
an identity matrix by means of a number of row exchanges.
Thus it must be the case that Ji � � 1 or Ji � � 1. Denoting
the probability density of x by fx 	 x � , the results of this sec-
tion can be combined to yield the corresponding pdf fy 	 y �
of y � Pmax 	 x � as [3, p. 143]

fy 	 y � �
�

∑N 
 1
k � 0 fx 	 Pky � y1 � max 	 y1 �������
� yN �

0 otherwise � (13)

This expression can finally be used to find the distribution
of the maximal invariant statistic under each hypothesis.
Under H0,

fx 	 x � � 	 2πσ2 � 
 N � 2e

 1

2σ2 xT x � (14)

Therefore the distribution of y � Pmax 	 x � is

fy 	 y � �����
�	

∑N 
 1
k � 0 	 2πσ2 � 
 N � 2e


 1
2σ2 
 Pky � T 
 Pky �

y1 � max 	 y1 ��������� yN �
0 otherwise �

(15)

Once again using the relation 	 Pk � T � P 
 k, this can be sim-
plified to

fy 	 y � �����
�	

N 	 2πσ2 � 
 N � 2e

 1

2σ2 yT y

y1 � max 	 y1 ��������� yN �
0 otherwise �

(16)

When H1 is in force, the situation is slightly more complex:
now the mean of the observation takes some value in the
set � Pθs � θ � 0 ������� � N � 1 � . The probability density of x is
therefore

fx 	 x � � 	 2πσ2 � 
 N � 2e

 1

2σ2 
 x 
 Pθs � T 
 x 
 Pθs � � (17)

where θ is some integer in the range 0 to N � 1. Substituting
into the expression for fy 	 y � gives

fy 	 y � �����
�	

∑N 
 1
k � 0 	 2πσ2 � 
 N � 2e


 1
2σ2 
 Pky 
 Pθs � T 
 Pky 
 Pθs �

y1 � max 	 y1 ��������� yN �
0 otherwise �

(18)



The first case in this expression needs to be looked at in
more detail: under the condition y1 � max 	 y1 �������
� yN � ,

fy 	 y � �
N 
 1

∑
k � 0 	 2πσ2 � 
 N � 2e


 1
2σ2 yT P

� kPky 
 2sT P
� θPky

�
sT P

� θPθs

� 	 2πσ2 � 
 N � 2e

 1

2σ2 
 yT y
�

sT s � N 
 1

∑
k � 0 esT P � θPky � (19)

Using the fact that P 
 l � PN 
 l , the sum in this final expres-
sion can be written as

N 
 1

∑
k � 0 esT P

� θPky �
N 
 1

∑
k � 0 esT Pk � θy

�

 1

∑
l � 
 θ

esT Ply � 
 N 
 1 � 
 θ

∑
l � 0 esT Ply

�
N 
 1

∑
l � N 
 θ

esT Ply � 
 N 
 θ � 
 1

∑
l � 0 esT Ply

�
N 
 1

∑
l � 0 esT Ply � (20)

resulting in the final pdf for y under H1 as

fy 	 y � � ���
�	
	 2πσ2 � 
 N � 2e


 1
2σ2 
 yT y

�
sT s � ∑N 
 1

l � 0 esT Ply

y1 � max 	 y1 ��������� yN �
0 otherwise �

(21)

Under both cases the density of the maximal invariant is
seen to be independent of the unknown parameter θ, as re-
quired.

7 Optimal invariant likelihood ratio
test

Once the observation x has been mapped onto the corre-
sponding maximal invariant statistic, a likelihood ratio test
can be performed on this quantity. The likelihood ratio for
the problem is

l 	 y1 ��������� yN � � 	 2πσ2 � 
 N � 2e

 1

2σ2 yT y
e

 1

2σ2 sT s ∑N 
 1
l � 0 esT Ply

N 	 2πσ2 � 
 N � 2e

 1

2σ2 yT y

� 1
N

e

 1

2σ2 sT s
N 
 1

∑
l � 0 esT Ply � (22)

The log-likelihood ratio is therefore

L 	 y � � � lnN � 1
2σ2 sT s � ln

N 
 1

∑
l � 0 esT Ply � (23)

The best invariant test is to compare this ratio to a thresh-
old, and decide H1 when exceeded:

� lnN � 1
2σ2 sT s � ln

N 
 1

∑
l � 0 esT Ply

H1��
H0

η

ln
N 
 1

∑
l � 0 esT Ply

H1��
H0

η � lnN � 1
2σ2 sT s (24)

The resulting test is uniformly most powerful out of all tests
which share the same invariances. This means that no other
test which is invariant to cyclic permutations of the obser-
vations can perform as well as this test, regardless of the
value of the unknown parameter θ. Since the invariance
is a perfectly reasonable one for the problem, it is fair to
assert that this is the optimal test.

It is worth noting that the estimation of the parameter θ is
explicit in the GLRT of equation 7. Thus the most likely
location of the detected signal is also provided by the test.
For the UMPI test, however, the dependence on the param-
eter is completely eliminated from the problem by the in-
variance condition. At no point does this test make use of
an estimate of θ, either implicitly or explicitly.

8 Extension to correlated noise

The previous results were based on detection in a white
noise environment. The results can be extended to the case
where the noise has a known circulant covariance matrix.
This is a special case of the general stationary condition,
where the matrix has a Toeplitz structure. The constraint
that the covariance matrix be circulant is required in or-
der that the hypothesis testing problem remain invariant to
cyclic permutations.

For this case, the hypotheses are as in equations 1 and 2, but
now the distribution of the noise is n : N

�
0 � C � . Applying the

(assumed invertible) whitening transformation z � C 
 1 � 2x
to the observed data, the hypotheses become z : N

�
0 � I � un-

der H0 and z : N
�
C 
 1 � 2Pθs � I � under H1. Now, if C is circu-

lant then C 
 1 � 2 is also circulant, so C 
 1 � 2 � PθC 
 1 � 2P 
 θ.
Writing this as C 
 1 � 2Pθ � PθC 
 1 � 2, the distribution un-
der H1 is z : N

�
PθC 
 1 � 2s � I � . This can be recognised as

the problem of invariant detection of the modified signal
C 
 1 � 2s in white noise. The test given in the previous sec-
tion can therefore be used in this modified problem, and is
once again UMPI.

Finally, it is noted that the components of a random vector
with a circulant covariance matrix can be diagonalised by
means of the discrete Fourier transform (DFT). This can
provide a fast method of calculating the required test statis-
tic.



9 Distributions of the test statistics

Summarising the results of the previous sections, the GLRT
is

tGLRT 	 x � � max
θ ��
 0 � N 
 1 � 	 Pθs � T x

H1��
H0

ηGLRT � (25)

and the UMPI test is

tUMPI 	 x � � ln
N 
 1

∑
l � 0 esT Pl y

H1��
H0

ηUMPI � (26)

The thresholds ηGLRT and ηUMPI are constants which are
chosen to yield the desired false alarm rate.

The components of the sum in the UMPI statistic are sta-
tistically dependent upon one another, and each have a log-
normal distribution. The UMPI statistic is therefore given
by the logarithm of the sum of dependent lognormal vari-
ates. Sums of dependent and independent lognormal ran-
dom variables have been discussed at some length in the
literature, and it is well-known that no closed form exists
for their distribution [1]. It is common therefore to ap-
proximate the sum by yet another lognormal distribution
(which is appropriate particularly in the tails [4]), and per-
form identification by means of moment matching[8]. The
effectiveness of this approach seems reasonable for some
commonly occurring situations discussed in the references.

In order not to get engrossed in the details of analytical ap-
proximations, the results in this paper will be based instead
on Monte-Carlo simulations. The distributions of the test
statistics can be very easily obtained by applying the tests
to a large sample of observations from any specific configu-
ration of signal and noise. The signals used for testing pur-
poses are shown in Figure 1. These signals are normalised
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Figure 1: Target signals used in Monte-Carlo simulations.
The signals are Gaussians centred on 32 with standard
deviations of 2, 4, and 8.

to have unit energy. Various scalings of these signals are
considered, corresponding to signals with energies of 2, 4,
and 8. In all cases, the additive noise is comprised of 32 un-
correlated samples of zero-mean Gaussian noise with unit
variance.

Figure 2 shows distributions for each of the test statistics
for the case of the signals rescaled to have an energy of 8.
The results correspond to the signals shown in Figure 1,
and in each case the distribution to the right corresponds to
H1.
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Figure 2: Distributions of the GLRT statistic (top) and
UMPI statistic (bottom) under both H0 and H1 for each
of the signals tested. The signals were rescaled to have an
energy of 8.

10 Comparison of GLRT and UMPI
test powers

In order to estimate the receiver operating characteristics
(ROC) of the tests, 500000 samples of noise for nine cases
of interest were generated. These comprised the three sig-
nals in Figure 1, scaled to have energies of 2, 4, and 8.
The results are shown in Figure 3, each plot demonstrating
the results for one specific energy. The curves relate to the
signals plotted with line styles corresponding to those used
in Figure 1. The ROC curves for both the GLRT and the
UMPI tests are plotted in the same style, with the UMPI
ROC always being the upper one. (This is necessarily the
case since the UMPI test is uniformly more powerful than
any other invariant test.)

It is clear from the plots that the difference in performance
between the tests is marginal for the cases which were anal-
ysed. In addition, the differences seem to become even less
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Figure 3: ROC curves for detection of the test signals
scaled to have energy of 2 (top), 4 (middle), and 8 (bot-
tom).

pronounced when the energy of the signal to be detected
becomes high.

11 Discussion and Conclusions

In this paper a test for detecting a signal with unknown lo-
cation in white noise is derived, which is uniformly most
powerful in the class of all tests which are invariant to
cyclic permutations of the observations. It is demonstrated
for some specific cases of interest that the performance of
this test is not significantly better than that of the GLRT,
which is a suboptimal but more common solution to the
problem.

The importance of these results are twofold. Firstly, in-
sofar as the invariances are sensible for the problem, the
UMPI test cannot be improved upon by any other test

which shares the same invariances. Thus it provides an
ideal baseline against which the performance of compet-
ing tests can be assessed. Secondly, the fact that the power
of the two tests is comparable means that detectors based
on the conventional GLRT are not significantly suboptimal.
Thus it provides evidence that the asymptotic approach of
the GLRT to the UMPI test occurs quite quickly with in-
creasing observation length.

Invariance to cyclic permutations is not always strictly ap-
propriate for all unknown signal location problems. Some
problems are not inherently cyclic, especially those which
result from discretisation of continuous-time problems. A
UMP test cannot be expected for these situations: invari-
ance is essentially a symmetry condition, and can necessar-
ily only be applied to situations which exhibit the required
symmetries. Nonetheless, the results given in this paper
provide insight into the nature of the detection process, and
lend credibility to the GLRT.
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