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Abstract

An optimal test does not exist for the problem of detecting a known target with
unknown location in additive Gaussian noise. A common solution uses a generalised
likelihood ratio testing (GLRT) formalism, where a maximum likelihood estimate of
the unknown location parameter is used in a likelihood ratio test. The performance
of this test is commonly assessed by comparing it to the ideal matched filter, which
assumes the target location known in advance. This comparison is of limited utility,
however, since the fact that the location is unknown has a significant effect on the
detectability of the target. We demonstrate that a uniformly most powerful invariant
(UMPI) optimal test exists for a specific class of unknown target location problems,
where observations are discrete and shifts are defined circularly. Since this approach
explicitly models the location as unknown, an assessment of the suboptimality of
competing tests becomes meaningful. It is shown that for certain examples in this
class the GLRT performance is negligibly different from that of the optimal test.

Key words: Invariant detection, uniformly most powerful invariant (UMPI) test,
generalised likelihood ratio test (GLRT), optimality, cyclic permutation invariance,
unknown circular shift, unknown target location, circulant covariance matrices.

1 Introduction

Many problems in signal and image processing involve detecting a known tar-
get with unknown location in a sequence of data. This constitutes a composite
hypothesis testing problem, with the actual target location playing the role of
an unknown parameter under the target present hypothesis.

The most common structured approach to this problem is to use the gener-
alised likelihood ratio test (GLRT) [1], which has been studied at length in the
engineering and applied statistics literature. It involves obtaining a maximum
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likelihood estimate of the location parameter, and performing a simple hy-
pothesis test on the data under the assumption that the estimate is accurate.
The procedure constitutes a special case of a plug-in classifier formulation [2],
but is generally favoured on account of asymptotic optimality properties [3].

The popularity of the GLRT for the unknown target location problem is per-
haps more accidental than planned: the formulation for transient targets very
often leads naturally to an implementation in a sliding window framework.
Here a detection statistic is calculated for sequential overlapping intervals of
received data, and a decision of target presence made if any of the test val-
ues exceeds some threshold. This is a natural procedure to adopt in detection
systems which operate continuously through time.

The use of the GLRT in signal processing is usually justified in terms of its
asymptotic optimality properties: as estimates of the unknown parameters
become more accurate, the GLRT performance approaches that of the ideal
matched filter which assumes the values known. It is for this reason that one
commonly sees the GLRT performance for a test assessed by comparing it to
that of the ideal matched filter. Since the matched filter has perfect knowledge
of all quantities involved in the detection it cannot be improved upon, and its
performance represents an upper bound on the achievable performance of any
test.

The bound is not tight, however, and a test may perform considerably worse
than the ideal matched filter while still not being significantly suboptimal.
That is, the presence of the unknown parameter can significantly change the
detectability properties of the target. A more meaningful comparison requires
that the unknown parameters be explicitly modelled as such.

An optimal test does not exist for the general problem of detecting a target
with unknown location in additive noise. Such a test does however exist for
one specific case, in particular where samples form a finite discrete sequence
and shifts are defined circularly over the observation interval. In this paper an
optimal test is developed under these conditions: an invariant hypothesis test-
ing formulation is followed, where the tests considered are restricted to those
which are invariant to cyclic permutations of the observations, and the best
test is found within this class. This test is uniformly most powerful invariant
(UMPI) under the invariance condition described.

Although the UMPI test has certain advantages over the GLRT for the un-
known cyclic permutation target problem, it is argued that its main benefit
lies in providing a baseline against which the GLRT can be compared. It is
demonstrated for some simple targets that the differences between the GLRT
and the optimal UMPI test performance are very small. This provides defini-
tive justification for the traditional GLRT solution to the problem.
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The need to define shifts circularly is quite a restriction, although in some sig-
nal analysis scenarios the condition is at least approximately appropriate [4].
Many real problems, on the other hand, involve the sampling of continuous-
time signals over a finite time interval, which will instead result in targets
being truncated at the edges of the observation. Unfortunately, this situation
does not exhibit sufficient symmetry to afford a sensible invariance condition,
and therefore does not aid in the selection of optimal tests. Nonetheless, if
the observation interval is long and the targets short and transient then these
edge effects may be expected to play a minimal role, and results obtained for
the one case should extend to the other. Therefore results obtained for the
GLRT under cyclic permutation invariance may be considered to be at least
approximately appropriate for related cases with shifts defined differently.

Even without the significance to unknown location target detection, the test
presented is interesting purely from an academic point of view, as an exercise
in invariant hypothesis testing. As such, the formulation complements other
ideal invariant detector formulations that have appeared in the literature, for
example invariance to signal scaling, invariance to subspace interference [5,6],
and invariance to unknown covariance elements [7,8].

The structure of this paper is as follows. In Section 2 the cyclic permuta-
tion invariant detection problem formulation is presented, and the standard
GLRT solution presented. In Section 3 the optimal (UMPI) test for this prob-
lem is derived. Section 4 compares the performance of these two tests, using
Monte-Carlo simulations for a simple set of signals. Section 5 briefly discusses
extensions of the testing principle to other problems.

Throughout this paper, data sequences are represented as column vectors de-
noted by bold roman characters. The notation x : N [m,C] is used to signify
that the random vector x has a multivariate normal (MVN) distribution, with
mean m and covariance matrix C.

2 Cyclic permutation invariant detection problem formulation

Suppose N samples x1, . . . , xN of data are observed. Under hypothesis H0,
these samples are independent and identically distributed as N [0, σ2] — a
more general case is considered in Section 3.5. Under hypothesis H1, some
shifted version of the prototype target signal s1, . . . , sN is added to the noise
samples. For discrete-time observations it is natural to regard shifts as cyclic
permutations of the elements, so under H1 the mean of the observations is
some cyclic permutation of s1, . . . , sN . Figure 1 demonstrates four possible
instances of target presence under the assumptions described.
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Fig. 1. Instances of four possible targets (Gaussian bumps) which may occur in the
observed data interval.

The problem is more simply described in vector notation: letting x = (x1, . . . , xN)T ,
n = (n1, . . . , nN)T , and s = (s1, . . . , sN)T , the hypotheses are

H0 : x = n (1)

versus
H1 : x = Pθs + n, (2)

where n : N [0, σ2I] and P is the cyclic permutation matrix

P =




0 · · · 0 1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0




. (3)

It can be seen that premultiplying the column vector x by P cyclically per-
mutes the elements one position downwards:




0 · · · 0 1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0







x1

...

xn−1

xn




=




xn

x1

...

xn−1




. (4)

Thus, under H1 the mean of x is some cyclic permutation of the signal vector s,
where the order of the permutation is unknown. The quantity θ is deterministic
and unknown, and without loss of generality can be restricted to take on
integer values from 0 to N − 1.

The conventional method of developing a test for the problem just described
would be to use a generalised likelihood ratio test (GLRT) [1], also referred
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to as the likelihood ratio test for composite hypotheses in the statistics liter-
ature [3]. This testing principle is commonly used in testing under composite
hypotheses, where there are unknown (nuisance) parameters in the formula-
tion. Effectively, maximum likelihood estimates are made of the unknown pa-
rameters under each hypothesis, and these estimates are substituted back into
the associated probability density functions. The resulting density functions
are then used in a conventional likelihood ratio test. Using this principle for
the unknown target location problem, a maximum likelihood estimate of the
unknown parameter θ is obtained from the observed data, under the assump-
tion that H1 is in force. This estimate is then substituted into a conventional
likelihood ratio test for simple hypotheses.

It is easy to show that the GLRT statistic is

ΛGLRT(x) = ln
maxθ∈[0,N−1] p1(x|θ)

p0(x)
, (5)

where p0(x) is the probability density function (pdf) of the observation x
under H0, and p1(x) the pdf under H1. Assuming the distributions given in
the previous section,

ΛGLRT(x) = max
θ∈[0,N−1]

− 1

2σ2

{
(x−Pθs)T (x−Pθs)− xTx

}

=
1

σ2

{
max

θ∈[0,N−1]
(Pθs)Tx +

1

2
sT s

}
. (6)

In the GLRT a decision is made by comparing this statistic to a threshold η:

max
θ∈[0,N−1]

(Pθs)Tx
H1
>
<
H0

σ2η − 1

2
sT s. (7)

The final quantity on the left of this test is simply the maximum of the inner
products between the observation x and all possible cyclic permutations of the
signal s. Since the null hypothesis is independent of the unknown parameter
θ, the threshold can be chosen so that the test has a constant false alarm rate.

3 Most powerful cyclic permutation invariant detection

The GLRT just described has no absolute optimality properties. As discussed
in the introduction, an optimal formulation is highly desirable even if only to
assess the suboptimality of this test. In this section an invariance argument
is used to restrict the form of the tests considered for the problem, and an
optimal test is found within this class.
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Invariant detection is nicely treated in the book by Scharf [9]. In short, to
obtain an optimal invariant test for a problem one needs to (1) find a suitable
group of transformations of the observation within which to enforce invariance,
(2) find the maximal invariant statistic for the problem under the different hy-
potheses, along with the corresponding probability densities, and (3) perform
a test of hypotheses based on the value of this maximal invariant. The remain-
der of this section addresses each of these issues in turn, finally yielding the
optimal invariant test for the problem under investigation.

3.1 Invariance of the hypothesis testing problem

There is no uniformly most powerful (UMP) test for the hypothesis testing
problem under consideration here. In the search for an optimal characteri-
sation, one option is therefore to restrict the class of tests which are to be
considered. For the case of detecting a signal with unknown location, it is
natural to require that the hypothesis test be constrained such that the same
decision be made for arbitrarily shifted versions of any given observation. The
transformation group is therefore taken to be

G = {g(x)|g(x) = Pkx, k = 0, . . . , N − 1}. (8)

This places an equivalence on the set of observations {P0x, . . . ,PN−1x}, which
is natural on account of the symmetry of the elements of the observations under
each hypothesis. Thus the observations

(x1, . . . , xN−1, xN)T ≡ (xN , x1, . . . xN−1)
T ≡ · · · ≡ (x2, . . . , xn, x1)

T (9)

are all considered to be equivalent by the detector. From the way the hypoth-
esis testing problem has been formulated, it cannot be said that enforcing this
equivalence is restricting the form of the detector in any unreasonable way.

The testing problem is invariant to the group G. This can be established by
considering the distributions of the observation x under each hypothesis: in
both cases x is MVN with covariance matrix σ2I, under H0 the mean is 0,
and under H1 the mean is one of the elements in the set {P0s, . . . ,PN−1s}.
Consider now an element gk(x) = Pkx of the group G. Since this is a linear
transformation of x, the distribution of y = gk(x) is N [PkE{x}, σ2Pk(Pk)T ],
where Ex is the expected value of x. Noting now that (Pk)T = PN−k = P−k,

y : N [PkE{x}, σ2I]. (10)

Thus under H0 the mean of the vector y is 0, and under H1 it is an element
of the set {PkP0s, . . . ,PkPN−1s} = {P0s, . . . ,PN−1s}. The transformation
gk therefore preserves the form of the distribution and retains the partition of
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the parameter space under each hypothesis. Since this conclusion is valid for
all elements g ∈ G, the hypothesis testing problem is invariant-G.

3.2 Maximal invariant statistic for the problem

Sufficient statistics play an important role in hypothesis testing, in that they
summarise the data without ignoring anything that is important to the de-
cision problem. In invariant testing the maximum invariant statistic serves
an analogous role: this is a statistic which has the required invariances, but
which also captures all the useful information in the observation regarding the
decision process.

For the invariant detection problem under discussion, one such statistic can
be obtained by defining Pmax(x) to be that function which cyclically permutes
the elements of the vector x until the element with the maximum value is in
the first position. Since the permutation is cyclic, the direction of the shift is
irrelevant. Note that for the distributions considered here Pr{xi = xj} = 0 for
i 6= j, so the maximum element of x will be unique with probability 1.

The statistic Pmax(x) is clearly invariant to the group G: since one of the
elements of x is always maximum and elements of G simply permute the
observation x cyclically, Pmax[g(x)] = Pmax[x] for all g ∈ G. Additionally, for
the same reasons, the condition Pmax[g(x1)] = Pmax[g(x2)] means that x1 and
x2 must be related to one another through a cyclic shift, so x2 = g(x1) for
some g ∈ G. Thus the statistic Pmax(x) is maximal.

As explained by Lehmann [10] and Scharf [9], the significance of this result is
that only functions of the maximal invariant statistic have to be considered
when looking for a test which is invariant to G.

The condition Pr{xi = xj} = 0 for i 6= j is met whenever x is governed
by a true probability density function. Strictly, the condition {xi = xj} then
defines a set of probability measure zero. Note that this does not mean that xi

cannot equal xj, just that for purposes of probability assignment the event is
insignificant. For example, if x and y are jointly normal, then the event x = y
is possible but has probability zero. The condition Pr{xi = xj} = 0 for i 6= j
is not met if there is a point probability mass in the observation space (eg. a
dirac delta in at least one location). However, this does not occur for any of
the densities used in this paper and has not been considered further.
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3.3 Distribution of the maximal invariant statistic

The method described by Hogg and Craig [11, p. 142] in relation to order
statistics provides a means of determining the distribution of the maximal
invariant. Firstly it is reasserted that two elements of x are equal with prob-
ability zero, so the joint probability density of x can be defined to be zero at
all points which have at least two of their coordinates equal — this will not
affect any probability arguments based on the distribution. The set A where
the probability density of x is nonzero can therefore be partitioned into N
mutually disjoint sets:

A1 = {x|x1 = max(x1, . . . , xN)}
... (11)

AN = {x|xN = max(x1, . . . , xN)}.

The set Ai is thus the set of all points in RN that have no elements equal, and
have xi as their largest element.

Consider the function y = Pmax(x), where y is a vector in RN with elements
defined according to y = (y1, . . . , yN)T . This defines a 1− 1 transformation of
each of A1, . . . ,AN onto the same set A1. For points in Ai, the transformation
y = Pmax(x) cyclically permutes the elements of x upwards by i− 1 positions.
Thus the inverse function is

x = Pi−1y (12)

which simply rotates them back downwards by the same amount.

Letting Ji be the determinant of the Jacobian of the inverse transformation
corresponding to Ai,

Ji = |Pi−1|. (13)

Now by the structure of Pi−1, it is always possible to obtain an identity matrix
by means of a number of row exchanges. Thus it must be the case that Ji = +1
or Ji = −1. Denoting the probability density of x by fx(x), the results of this
section can be combined to yield the pdf fy(y) of y = Pmax(x) as [11, p. 143]

fy(y) =





∑N−1
k=0 fx(P

ky) y1 = max(y1, . . . , yN)

0 otherwise.
(14)

This expression can be used to find the distribution of the maximal invariant
statistic under each hypothesis. Under H0,

fx(x) = (2πσ2)−N/2e−
1

2σ2 xT x. (15)
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Therefore the distribution of y = Pmax(x) is

fy(y) =





∑N−1
k=0 (2πσ2)−N/2e−

1
2σ2 (Pky)T (Pky)

y1 = max(y1, . . . , yN)

0 otherwise.

(16)

Once again using the relation (Pk)T = P−k, this can be simplified to

fy(y) =





N(2πσ2)−N/2e−
1

2σ2 yT y

y1 = max(y1, . . . , yN)

0 otherwise.

(17)

When H1 is in force, the situation is slightly more complex: now the mean
of the observation takes some value in the set {Pθs|θ = 0, . . . , N − 1}. The
probability density of x is therefore

fx(x) = (2πσ2)−N/2e−
1

2σ2 (x−Pθs)T (x−Pθs), (18)

where θ is some integer in the range 0 to N−1. Substituting into the expression
for fy(y) gives

fy(y) =





∑N−1
k=0 (2πσ2)−N/2e−

1
2σ2 (Pky−Pθs)T (Pky−Pθs)

y1 = max(y1, . . . , yN)

0 otherwise.

(19)

The first case in this expression needs to be looked at in more detail: under
the condition y1 = max(y1, . . . , yN),

fy(y) =
N−1∑

k=0

(2πσ2)−N/2e−
1

2σ2 (yT y−2sT P−θPky+sT s)

= (2πσ2)−N/2e−
1

2σ2 (yT y+sT s)
N−1∑

k=0

e
1

σ2 sT P−θPky. (20)

Using the fact that P−l = PN−l and noting that the sum in this expression in-
volves exponentials of the inner product between s and all cyclic permutations
of y, the range of the summation can be modified:

N−1∑

k=0

e
1

σ2 sT P−θPky =
N−1∑

l=0

e
1

σ2 sT Ply. (21)

This yields the final pdf for y under H1:

fy(y) =





(2πσ2)−N/2e−
1

2σ2 (yT y+sT s) ∑N−1
l=0 e

1
σ2 sT Ply

y1 = max(y1, . . . , yN)

0 otherwise.

(22)
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In both cases the density of the maximal invariant is seen to be independent
of the unknown parameter θ, as required.

The formulation presented in this section applies to real x, but analogous re-
sults can be obtained when x is complex. In this case the form for the normal
densities in Equations 15 and 18 should be changed to their complex coun-
terparts, and the operator Pmax(x) must be redefined to cyclically permute x
until the element with the largest modulus is in the first position.

3.4 Optimal invariant likelihood ratio test

Once the observation x has been mapped onto the corresponding maximal
invariant statistic, a likelihood ratio test can be performed on this quantity.
The likelihood ratio for the problem is

l(y) =
(2πσ2)−

N
2 e−

1
2σ2 yT ye−

1
2σ2 sT s ∑N−1

l=0 e
1

σ2 sT Ply

N(2πσ2)−
N
2 e−

1
2σ2 yT y

=
1

N
e−

1
2σ2 sT s

N−1∑

l=0

e
1

σ2 sT Ply. (23)

The log-likelihood ratio is therefore

L(y) = − ln N − 1

2σ2
sT s + ln

N−1∑

l=0

e
1

σ2 sT Ply. (24)

The best invariant test is to compare this ratio to a threshold η and decide
H1 when exceeded, yielding

ln
N−1∑

l=0

e
1

σ2 sT Ply
H1
>
<
H0

η + ln N +
1

2σ2
sT s. (25)

The resulting test is most powerful out of all tests which share the same invari-
ances. This means that no other test which is invariant to cyclic permutations
of the observations can perform better, regardless of the value of the unknown
parameter θ. Since the invariance is a reasonable one for the problem, it is fair
to assert that this is the optimal test.

Again noting that the summation in the expression for this test goes over
terms involving inner products between all cyclic permutations of y with s, it
is evident that

N−1∑

l=0

e
1

σ2 sT Ply =
N−1∑

l=0

e
1

σ2 sT Plx. (26)

10



Thus the final expression for the test can be written in terms of the original
observed data as

ln
N−1∑

l=0

e
1

σ2 sT Plx
H1
>
<
H0

η + ln N +
1

2σ2
sT s. (27)

A test is uniformly most powerful invariant (UMPI) if it is invariant to a
required group transformation, and it is more powerful than any other invari-
ant test for all possible values of any unknown nuisance parameters. Since the
maximal invariant test statistic contains no unknown parameters, the test just
given is trivially UMPI.

It is worth noting that the estimation of the parameter θ is explicit in the
GLRT of equation 7. Thus the most likely location of the detected signal is
also provided by the test. For the UMPI test, however, the dependence on
the parameter is completely eliminated from the problem by the invariance
condition. At no point does this test make use of any estimate of θ, either
implicitly or explicitly.

3.5 Extension to correlated noise

The previous tests were based on detection in a white noise environment. The
results can be extended to the case where the noise has a known circulant
covariance matrix. This is a special case of the general stationary condition,
where the matrix has a Toeplitz structure. The constraint that the covari-
ance matrix be circulant is required for the hypothesis testing problem remain
invariant to cyclic permutations.

In the circulant covariance case, the hypotheses are as in equations 1 and 2, but
now the distribution of the noise is n : N [0,C]. Applying the (assumed invert-
ible) whitening transformation z = C−1/2x to the observed data, the hypothe-
ses become z : N [0, I] under H0 and z : N [C−1/2Pθs, I] under H1. Now, if C
is circulant then C−1/2 is also circulant, so C−1/2 = PθC−1/2P−θ [12]. Writing
this as C−1/2Pθ = PθC−1/2, the distribution under H1 is z : N [PθC−1/2s, I].
This can be recognised as the problem of invariant detection of the modi-
fied signal C−1/2s in white noise. The test given in the previous section can
therefore be used in this modified problem, and is once again UMPI.

Finally, it is noted that the components of a random vector with a circulant
covariance matrix can be diagonalised by means of the discrete Fourier trans-
form. This can provide a fast method of calculating the required test statistic.
Note that the test complexity is the same as that of the GLRT — the only
difference is in how the components of the test are combined into the final
statistic.
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4 Comparison of GLRT and UMPI tests

To compare the GLRT and UMPI tests, the distribution of the test statistics
need to be found in each case under the two possible hypotheses. For both
tests presented, expressions for the resulting distributions are complicated,
and have no convenient and easily calculated closed form. In this section,
possible approaches are presented for how the distributions could be estimated
if necessary. For the remainder of this paper, however, direct Monte-Carlo
methods are used to obtain the relevant test statistics, to avoid having to deal
with issues related to accuracy of approximations.

4.1 Distributions of the test statistics

Summarising the results of the previous sections, the GLRT is

tGLRT(x) = max
θ∈[0,N−1]

(Pθs)Tx
H1
>
<
H0

ηGLRT, (28)

and the UMPI test is

tUMPI(x) = ln
N−1∑

l=0

e
1

σ2 sT Plx
H1
>
<
H0

ηUMPI. (29)

The thresholds ηGLRT and ηUMPI are constants which are chosen to yield the
desired test properties. Under a Neyman-Pearson formulation, these constants
are commonly chosen to produce a test with a required false alarm rate.

The components of the sum in the UMPI statistic are statistically dependent
upon one another, and each have a lognormal distribution. The UMPI statistic
is therefore given by the logarithm of the sum of dependent lognormal variates.
Sums of dependent and independent lognormal random variables have been
discussed at some length in the literature, and no closed form is known for
their distribution [13]. It is common therefore to approximate the sum by
yet another lognormal distribution (which is appropriate particularly in the
tails [14]), and perform identification by means of either moment or cumulant
matching [15]. The effectiveness of this approach seems reasonable for some
commonly occurring situations discussed in the references.

If the sum in the test statistic tUMPI(x) does indeed have an approximately
lognormal distribution, then the test statistic itself should be approximately
normal. To a high degree of accuracy, then, the mean and variance will com-
pletely specify the distribution of the statistic under each hypothesis. For the
white noise case the methods presented by Schwartz and Yeh [15] can be used

12



to find the approximate distribution of the test statistics, while for the corre-
lated case the generalisations discussed by Abu-Dayya and Beaulieu [13] and
Safak [16] are appropriate. Therefore, although closed-form expressions for the
distributions are not available, test thresholds can be selected to yield desired
false alarm probabilities, and test power can additionally be calculated for the
detector.

The distribution of the GLRT test statistic is even less tractable, and requires
general results regarding the density of the maximum of a set of correlated
random samples from a normal population. Afonja [17] presents a method
for finding the first and second moments of this maximum in terms of the
moments of truncated multivariate normal density functions. These can in
turn be found if the general correlated multivariate normal probability integral
can be calculated over rectangular regions of the probability space [18]. This
calculation is computationally expensive and can only be performed over low
dimensional spaces in practice. An alternative and more conventional method
of finding an approximate distribution of the GLRT test statistic is to use
known asymptotic results regarding maximum likelihood estimates in a testing
framework [3]. This is however only accurate for low noise observations, which
cannot in general be expected in signal processing.

4.2 Comparison for some specific transient targets

To avoid getting engrossed in the details of analytical approximations, the
results in this paper are based instead on Monte-Carlo simulations. The dis-
tributions of the test statistics can be very easily obtained by applying the
tests to a large sample of observations from any specific configuration of target
and noise. The first set of three targets used for testing purposes is shown in
Figure 2. In total, three different scalings of each of these targets are consid-
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Fig. 2. First set of target signals used in Monte-Carlo simulations. The signals are
Gaussians centered on 32 with standard deviations of 2, 4, and 8.
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ered, corresponding to energies of 2, 4, and 8. The additive noise used in the
simulations is comprised of 64 uncorrelated samples of zero-mean Gaussian
noise with unit variance.

Figure 3 shows estimates of the distributions of the test statistics for the
specific case where the targets are scaled to have an energy of 8. The line
styles in each case correspond to those used for plotting the targets in Figure 2,
and in all instances the curves to the right depict the distributions under H1.
The distributions were estimated using 50000 noise vector samples and 50000
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Fig. 3. Distributions of the GLRT statistic (top) and UMPI statistic (bottom) under
both H0 and H1 for each of the signals tested. The signals were scaled to have an
energy of 8.

noise plus target samples for each target at each scaling. The test statistic
values given in Equations 28 and 29 were calculated for each of these samples,
and frequency histograms generated using 50 bins over the range of values
obtained.

As discussed in Section 4, it is common to approximate the sum of lognormal
variates by a lognormal distribution. If this assumption were accurate for the
scenario presented here, the distribution of the UMPI test statistic values
would be approximately normal under both hypothesis. However, in Figure 3
it is clearly seen that the distributions under H1 are quite considerably skewed

14



to the right. Blindly applying approximations in this case could be misleading.

Receiver operating characteristics (ROCs) for the GLRT and UMPI test were
obtained for nine cases of interest, namely those of each of the three targets
in Figure 2 scaled to have energies of 2, 4, and 8. These ROCs are shown in
Figure 4, each plot containing results for one specific energy. The line styles
for the curves again relate to those used in Figure 2.

Also shown in the plots in Figure 4 are the ROCs for the ideal matched
filter, where the location of the target is known. Since the performance of
the matched filter in white noise depends only on the target energy, a single
ROC in each plot applies to all of the targets. This matched filter ROC curve
represents an absolute upper bound on the performance that any detector can
achieve for the problem.

As mentioned in the introduction, in assessing the suboptimality of the GLRT
(or any other suboptimal test) for any given problem it is common to com-
pare the ROC for the test to that of the matched filter. If the performance is
comparable, then near optimality of the test under analysis is assured. Tem-
porarily ignoring the UMPI results in Figure 4, it may be concluded that the
GLRT performance seems to approach optimality as the target to be detected
becomes wider (the dotted lines in the plots). In contrast, the performance
of the GLRT for narrow targets (the solid lines in the plots) is considerably
worse than that of the matched filter. This observation raises the suspicion
that the GLRT may be significantly suboptimal in the narrow target case.

The comparison of the GLRT with the matched filter is inconclusive, however,
since the two cases assume different unknown quantities. That is, even if the
GLRT performance is considerably worse than that of the matched filter,
there is no guarantee that this implies suboptimality of the GLRT when the
target location is in fact unknown. On the other hand the UMPI test provides
an optimal baseline that is comparable, since it makes precisely the same
assumptions as the GLRT. A comparison of the GLRT to the UMPI test is
therefore both justified and meaningful.

When the GLRT ROC is compared with that of the UMPI test, a very differ-
ent conclusion emerges: for the unknown target location problem the optimal
test performance is highly dependent on the target being detected. The short
duration targets are inherently less detectable than the wider targets when
their location is unknown, and this causes the difference in performance of the
GLRT. Also, since the difference in performance between the GLRT and the
UMPI test is marginal, the near optimality of the GLRT for the specific test
cases under investigation is assured.
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(a) ROC curves for energy 2.
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(b) ROC curves for energy 4.
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(c) ROC curves for energy 8.

Fig. 4. ROC curves for detection of the three Gaussian test signals scaled to three
different energies.

4.3 Comparison for other targets

The difference in performance between the GLRT and the UMPI test is small
for Gaussian-shaped targets, which were chosen for their smooth and transient
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properties. In this section two other classes of signals are considered: sinusoids
of different frequencies, and rectangular pulses with different widths. There
are again three signals in each test class, and three scalings of each of these
signals are considered.

Figure 5 shows the ROC curves for sinusoidal targets with periods of 16, 8,
and 4. The targets are also shown in the figure. The performance of the two
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(a) Sinusoidal targets.
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(b) ROC curves for energy 2.
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(c) ROC curves for energy 4.
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(d) ROC curves for energy 8.

Fig. 5. ROC curves for detection of three sinusoidal test signals scaled to three
different energies.

tests are almost identical for this case, again indicating near optimality of the
GLRT. Interestingly, the detectability of the signals does not appear to vary
over the range of frequencies considered.

Figure 6 shows another set of results, this time for rectangular pulse targets
of widths 1, 4, and 8. Comparing these curves with those in Figure 4 it is
evident that these targets are less detectable than Gaussian-shaped targets
of equivalent energies. Nonetheless, the difference between the performance of
the GLRT and UMPI test is again small.

The fact that the differences between the two tests is small in all the cases
explored lends support to the near-optimality of the GLRT. The only instance
where the UMPI test seems to exhibit slightly better performance is at low
signal energies, although the shape of the target also plays a role.
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(a) Rectangular pulse targets.
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Fig. 6. ROC curves for detection of three rectangular pulse test signals scaled to
three different energies.

5 Extensions and applications

This paper deals with optimality issues related to the detection of targets
with unknown location. For this application, forcing invariance to cyclic per-
mutations of the elements of the observation is somewhat contrived, but does
provide an indirect means of quantifying optimality of related tests.

In some applications, however, invariance to cyclic permutations of the ele-
ments of an observation is exactly what is required. For example, Figure 7(a)
shows an image of a calibration object used in computer vision — each target
marker has a unique circular binary code that needs to be identified [19]. In
this case, the task of locating the markers can be performed using generic ro-
bust ellipse detectors. To subsequently classify the markers, however, we need
to perform hypothesis tests of the observed data against the known binary
code configurations, subject to an unknown overall rotation of the marker. To
do this, we can sample the pixel data around the located ellipse, stack the
sample values into an observation vector, and use this vector in a subsequent
hypothesis test. In this case invariance to cyclic permutations corresponds to
invariance to rotation of the binary code around the marker center.

In a signal processing example, the UMPI test can be used to optimally dif-
ferentiate between observations from two periodic signals that repeat over a
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(a) Calibration object with bi-
nary coded markers.

(b) Two one-period samples from a
periodic signal.

Fig. 7. Applications where invariance to cyclic permutation is appropriate.

common and known period. If the observation sample is chosen to consist of
an integral number k of fundamental periods, then the resulting signal will
contain k cycles of the signal. A shift in the sampling origin then just results
in a cyclic permutation of the underlying signal samples (see Figure 7(b)).
Invariance to cyclic permutations is therefore a natural condition to impose
on tests for this problem, and the UMPI test will consequently be optimal.
Note that the optimality of this approach does depend on the signal being
sampled at a sufficiently high frequency to avoid aliasing.

In general, invariance to cyclic permutation may be relevant when signals
are cyclic in their nature, or exhibit some kind of circular symmetry. Finite-
duration samples of cyclostationary random processes fall into this category.
These types of signals occur quite often in practical applications.

6 Conclusions

A uniformly most powerful invariant test has been derived for the problem of
detecting a known target with unknown cyclic permutation in Gaussian noise
with a circulant covariance matrix. The set of permissible test statistics are
constrained to be those which are invariant to cyclic permutations of the data.
The most powerful test within this class is found, which performs better than
any other cyclic permutation invariant test statistic for all target locations.
References are provided that argue that the distribution of the test statistic
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is approximately normal, and outline analytical methods for finding the first
two moments.

The UMPI test obtained for the problem is compared with the more conven-
tional solution, namely the GLRT, and it is shown for a number of targets
that the differences between the two tests is negligible. In fact, quite extensive
investigation has not yielded any cases where the UMPI test significantly out-
performs the GLRT. This asserts the near optimality of the GLRT for certain
unknown target location problems. The comparison is more meaningful than
a direct comparison of the GLRT to the ideal matched filter, which assumes
the location parameter known.

The comparison between the UMPI test and the GLRT is strictly only valid
when shifts are defined circularly and targets wrap around the edges of the
observation interval. However, the comparison should also be approximately
valid for linear shifts as long as the edge effects are not too severe. One such
example is when the target is short and the observation interval long. In this
case, comparing the GLRT and UMPI test performance for circular shifts
should provide a good estimate of the suboptimality of the GLRT for linear
shifts.

It has been observed by the authors that optimal tests are often derived for
the case of known target location, and that the tests are then applied in a
sliding window framework in a system that operates continuously through
time. The resulting detector has no claim to optimality, however, since the
conditions under which it is operating are not the same as those for which it
was designed. The methods presented in this paper provide some justification
for this ad hoc approach, at least for one simple class of problems.
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