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Abstract

The problem of estimating the relative orientation be-
tween two views of a compact object in the world is ad-
dressed. It is assumed that the structure of the object can
be approximated by an ellipsoid, although future work
will attempt to address this limitation. An energy min-
imisation approach is used to estimate the orientations of
the cameras that is consistent with the observed data. The
formulation is intensity-based, since the objects under in-
vestigation are small and there are too few corners for
feature-based methods to work reliably.

1. Introduction

Conventional dense stereo techniques require that cam-
eras be calibrated, with known relative viewpoints be-
tween the scene and the cameras. However, we are in-
terested in obtaining 3-D reconstructions for the situation
where a single camera observes a rigid object moving
within its view. In this case one needs to know the relative
orientation of the moving object between two successive
views of it. This is equivalent to estimating the relative
orientation between two views of the object taken simul-
taneously from disparate cameras.

Estimating the structure and motion of a scene from mul-
tiple image views is a classical problem in computer vi-
sion, and effective methods have been proposed for its
solution [3, 5]. For instance, if the camera intrinsics are
known then an efficient solution can be obtained by es-
timating the essential matrix from point correspondences
in the image views, extracting the relative orientation of
the cameras, and using dense stereo methods on the re-
sult. If the camera intrinsics are not known then they can
be estimated via autocalibration, as long as there are are
sufficiently many views of the object available and the
camera settings are not changed.

Dense stereo methods are commonly applied to approx-
imately planar scenes. In this case there is a natural co-
ordinate system in which to formulate the problem: each
pixel in one of the images (the reference image) is as-
signed a depth value, indicating the distance to the sur-
face of the object along the ray corresponding to the pixel.

This is called a 2.5-D representation, and is limited in that
the observed surface depth may only be a single-valued
function of the coordinate grid.

In this work we are interested in building 3-D models of
small and compact objects. The fact that they are small
means that standard corner detectors do not find suffi-
ciently many interest points for a good estimate of the
essential matrix to be obtained. Simple methods there-
fore cannot be used to estimate the relative locations of
the cameras imaging the object. We therefore formulate
methods that explicitly use image intensity values, rather
than geometric features. Secondly, our objects are com-
pact and tend to be approximately spherical rather than
planar. Simple depth-based stereo representations can
therefore not be used: there is no planar coordinate sys-
tem that can represent the object to a sufficient degree of
accuracy. We therefore make the rather strong assump-
tion that the object in the scene is an ellipsoid.

Under the approximations described, an energy function
is constructed that quantifies the inconsistency in the ob-
served images for any given configuration of ellipsoid
and camera pair. The formulation resembles a Lukas-
Kanade registration strategy [1], with the exception that
no explicit functional mapping is found for points be-
tween the two camera views. A standard Levenberg-
Marquardt optimiser is used to find that configuration of
views and object that is most consistent with the observed
image data.

An ellipsoidal object model is used for two reasons.
Firstly, an ellipsoid has nice mathematical properties un-
der perspective projection, with the image forming an el-
lipse in the camera view. Secondly, the compact objects
that we are interested in often tend to be approximately
elliptical, and it is hoped that we may be able to relax
the measurement process to make this assumption less
constraining. It is envisaged that the formulation pre-
sented may constitute an ”ellipsoid-plus-parallax” frame-
work, in contrast to the powerful ”plane-plus-parallax”
approaches found in the literature [4]. In many respects
this work is most similar to [2].

Section 2 describes the dataset used in this work. A high-
level description of the proposed algorithm is presented in
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(a) Image 1 (b) Image 2

Figure 1: Two images of a globe used as a dataset

Section 3, with some important details regarding the mea-
surement process and initialisation covered in Sections 4
and 5. The paper then concludes with some results.

2. Dataset

The dataset used in this work is comprised of two 640 ×
480 greyscale images of a small globe of the world, cap-
tured at slightly different orientations with the same cam-
era. These globes are hand-segmented into foreground
and background to produce the images shown in Figure 1.
Note that although the globe is at approximately the same
location in each image, this is neither assumed nor re-
quired by the algorithm.

The reason for choosing a globe as the subject is that it
matches the assumptions made in this work, namely that
the object is ellipsoidal. Also, it has sufficient texture for
estimates based on greyscale value to be meaningful.

Currently the method that is used requires knowledge of
the intrinsic parameters of the camera. Since a good cam-
era (with C-mount optics) was used, it is assumed that the
principal point was at the centre of the image plane, with
square pixels and zero skew. The camera intrinsics are
therefore represented by the matrix

K =

⎛
⎝f 0 iw/2

0 f ih/2
0 0 1

⎞
⎠ ,

where the image has iw columns and ih rows. The focal
length parameter was estimated from a rough calibration
to be approximately f = 1500. Experience has shown
that this parameter is not critical, as long as it is suffi-
ciently large and both the size of the object in the world
and the locations of the cameras are variable.

3. Algorithm outline

This section describes the basic algorithm outline, ignor-
ing various complications that arise in practice. The sec-
tion that follows describes the exceptions in detail.

We represent the object as a canonical ellipsoid (axes
aligned with the coordinate axes) at the origin of the co-

ordinate system, and with size parameters a, b, c repre-
senting the radii. There are two cameras in the world,
represented by the matrices

P1 = K1

(
R1 t1

)
and P2 = K2

(
R2 t2

)
.

The size of the ellipsoid is unknown, as is the rotation and
translation of each camera view. A minimal parameteri-
sation of the problem therefore has 15 degrees of free-
dom: 3 size parameters for the ellipsoid, and 3 rotation
and three translation parameters for each camera. Rota-
tion parameters in 3-D are notoriously badly behaved, so
we choose to represent each rotation using 4 quaternion
parameters. Thus the overall configuration can be repre-
sented by the unknown vector a ∈ R

17.

One of the benefits of using an ellipsoidal representation
of the object is that there is a simple closed form expres-
sion for its image under perspective projection. For ex-
ample, [6] shows that an ellipsoid in the world can be
represented by a 4 × 4 matrix Q (in homogeneous coor-
dinates), with a well-defined and easily calculated projec-
tion as an ellipse in any image. For a given camera and
world configuration a, we can therefore also easily find
the extremities of the projected ellipsoid in any image.

The basic measurement process proceeds as follows.
Choose a location x in the first camera view. For this
location, use the assumed camera parameters to back-
project the point, and find the 3-D point X where it inter-
sects the assumed location of the world ellipsoid. Then
take this intersection point and project it into the second
camera view, also using the assumed camera parameters,
to give a point x′ in image 2 corresponding to x. If the
intensity in the first image is given by I1(x) and the in-
tensity in the second image by I2(x′), then the error cor-
responding to x is given by

e1(x) = I1(x) − I2(x′).

Every location x chosen in the first camera view there-
fore generates a corresponding greyscale consistency er-
ror value.

The set of locations in the image at which errors are cal-
culated is explicitly specified. The option that is used in
this work is to use the segmentation map of the object
to determine the grid: a uniform (but possibly subsam-
pled) rectangular grid of locations in the image is cho-
sen that covers the rectangular bounding box of the fore-
ground object in the image. This constitutes an image-
based coordinate system, although it should be possible
to use a grid determined by the current world model if
desired. If there are n1 grid locations, then we have an
n1-dimensional vector e1(a) of errors for any given geo-
metrical configuration a.

The total error is taken to be the sum of squared er-
rors over the defined set of image locations: E1(a) =

72



e1(a)T e1(a). To maximise the consistency of the con-
figuration, we would like to minimise the error E(a) over
all a.

It is additionally desirable to have a symmetric error func-
tion, so that swapping the images does not change the re-
sults. A simple way to do this is to repeat the procedure
described with the roles of each image reversed. This will
produce an additional set of errors e2(a), each compo-
nent of which corresponds to a grid location in image 2.
A combined set of errors can then be formed by concate-
nation: e(a) = [e1(a)T e2(a)T ]T , with the total error
given by E(a) = e(a)T e(a).

To minimise the error, we perturb the parameters numeri-
cally, one at a time, and estimate the derivatives of the er-
ror components with respect to the parameters. Parameter
updates are then obtained using a Levenberg-Marquardt
iteration, where the coefficient matrix to be inverted is of
size p × p. Since is our case p is 17, this is easily com-
putable. The process is then repeated until convergence.

The basic measurement process described cannot be im-
plemented, due to inconsistent geometry in an arbitrarily
specified set of parameter values. For example, the back-
projected ray from a given pixel location may not inter-
sect the world ellipsoid, in which case a corresponding
location cannot be found in the second image. The mea-
surement process therefore has to be modified to take into
account exceptional circumstances. These modifications
are described in the next section.

4. Details of the measurement process

As described in the previous section, the basic measure-
ment process is quite simple. What is more complicated
is what to do when inconsistencies arise in the configura-
tion corresponding to a set of parameters.

Consider the case where a point is chosen on the coordi-
nate grid of the first image. If this point lies inside the
silhouette of the object there are three exceptions that can
occur:

1. The ray back-projected from the point in the first
image does not intersect with the model of the 3-D
ellipsoid in the world. There is therefore no corre-
sponding point in the second image. In this case we
use a geometric measure of inconsistency as the er-
ror: the closest consistent point is found in the image
(based on the known projection of the ellipsoid), and
the distance to this point is taken to be the error.

2. The back-projected ray from the first image inter-
sects the object, but the object itself occludes the
intersection point in the second camera view. This
does not correspond to an inconsistent geometry, so
we take the corresponding error to be zero.

3. The back-projected ray from the first image corre-
sponds to a valid point transfer across the ellipsoid,
but the projected point does not lie within the ob-
served silhouette in the second image. In this case
the error is taken to be the minimum distance be-
tween the projected point and the boundary of the
object in the second image. This is found using a
distance transform on the segmentation of the sec-
ond image.

If the point in the first image lies outside of the silhouette
of the object, then for a correct configuration the back-
projection of this point will not intersect the world ellip-
soid. If this is observed to be the case, then a zero error
is returned. However, if the ray does intersect the ellip-
soid, then the error is taken to be the minimum distance
in image space between the point and the projection of
the ellipsoid.

The methods described above attempt to avoid disconti-
nuities in the error function, since a large degree of in-
consistency results in larger errors than a small degree of
inconsistency. However, it must be noted that the errors
as defined above are all geometric, in contrast to the in-
tensity errors that result from the case where there is a
valid point transfer across the ellipsoid. This is inconsis-
tent, and highlights a severe shortcoming of the method
proposed. In practice these two types of errors can be
weighted differently in the cost function, but a more prin-
cipled solution would be desirable.

It may be possible to only use the errors corresponding to
valid intensity transfer, and still obtain a cost function that
attains a minimum only for the correct parameter values.
Initial attempts to do this have failed, but the possibil-
ity has not been excluded outright. This issue is further
complicated by the need to numerically estimate deriva-
tives with respect to parameters — when perturbing the
parameters it may happen that the perturbation causes er-
rors corresponding to valid transfer to become invalid and
therefore unavailable. If this is the case, then a possible
solution is to do all the perturbations, and only to include
errors at those locations that are common to all parame-
ters.

Figure 2 depicts important components of the measure-
ment process for one geometric configuration. Shown
on the left is the actual image data obtained from the
first camera. The second image contains pixel values ex-
tracted from image 2, but at locations determined by grid
points of view 1 determined by the current geometry. Al-
ternatively, one can think of the second image as being
the data from view 2 referred to view 1, where the im-
plied warp is via 3-D transfer across the world ellipsoid.
The third image contains the errors for the configuration:
for points with valid transfer the error is just the greyscale
difference between the previous two images; for pixels
with no valid transfer, errors are the geometric distance
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view 1 view 2 (referred) errors

Figure 2: Image, warped image, and error map for some
geometric configuration.

transform values described earlier. A zero pixel value
transfer error in this image is indicated by a mid-range
grey level, so that both positive and negative errors can
be seen.

5. Initialisation

Since the method proposed in this work is based on opti-
misation, an initial specification of both the ellipsoid and
the camera locations with respect to the world coordinate
system is required.

Two assumptions are used for initialisation. Firstly, the
object is initially taken to be a sphere in the world. It
is hoped that this is a good enough starting point for the
subsequent optimisation to succeed. Secondly, the two
views of the object are assumed to be taken from nearby
locations to one another. In this case it is reasonable to
initialise the second camera at the same position and ori-
entation in the world as the first. Note that the accuracy
of this assumption can be improved by capturing image
data at a higher frame rate.

Under the assumptions suggested, all that is required is
an initial specification of the radius of the spherical ob-
ject in the world, and the position of the first camera used
to image this sphere. Consider the case where the cam-
era is canonical and at the origin, and we want to position
the object at an appropriate position in the world. A sim-
ple sphere with centre Xc and radius rw (coordinate axes
aligned with the world coordinate frame) can be repre-
sented by the quadric equation

XT QX = XT

(
I −Xc

−XT
c XT

c Xc − r2
w

)
X = 0.

Suppose we observe that the image point x0 lies on the
edge of the projected ellipse. The corresponding ray in
the world can be written as X(α) = αx0, which we know
must touch the sphere at exactly one point. This point of
contact must satisfy

α = − c

bT x0
=

(XT
c Xc − r2

w)
XT

c x0

to be a valid tangent, so the corresponding point in the

world is

X0 =
(XT

c Xc − r2
w)

XT
c x0

x0.

Since the sphere has radius r2
w the distance between this

point and its centre is fixed:

∣∣∣∣Xc − (XT
c Xc − r2

w)
XT

c x0
x0

∣∣∣∣
2

= r2
w.

This provides one constraint on Xc.

The central projection of a sphere is in general an ellipse.
For practical cameras it seems a good approximation to
assume a circular projection, with the centre of the world
ellipsoid projecting to the centre of the circle in the im-
age. If this centre appears at xc in the image, then we
know that the centre of the sphere must lie on the ray
X(β) = βxc. Thus we must have Xc = βxc for some
value of β. We can substitute this into the equation above
and solve for β.

The resulting equation factors as

(β2xT
c xc−r2

w)[(β2xT
c xc−r2

w)xT
0 x0−β2(xT

c x0)2] = 0,

so two sets of solutions are obtained:

β2 =
r2
w

xT
c xc

or β2 =
r2
w(xT

0 x0)
(xT

c xc)(xT
0 x0) − (xT

c x0)2
.

Solutions to the first equation result in the tangent point
in the world being at X0 = 0, which in this context is a
degenerate solution. The other solutions are the ones re-
quired: as expected there is a positive one and a negative
one, corresponding to points in front of and behind the
camera respectively. We choose the positive solution.

Repositioning the coordinate frame so that the sphere is
at the origin simply involves a translation. It is easy to
show that a suitable choice for the transformed camera is
P′ = [I Xc], and the resulting quadric is

Q′ =
(

I 0
0T −r2

w

)
.

6. Results

The method described in this paper was implemented,
and applied to the images shown in Figure 1. The sym-
metric error described in Section 3 was used, on a regular
grid of pixel positions covering the bounding boxes of the
foreground image regions. The points of this grid were
taken at spacings of 5 pixels in both the vertical and hor-
izontal directions, mainly to reduce the amount of com-
putation that has to be done.

A simple multiresolution approach was included into the
optimisation, whereby the the Levenberg-Marquardt iter-
ations described were in fact applied to blurred versions
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Figure 3: Geometrical configuration for ellipsoid and two
cameras.

of the images. After convergence at a high level of blur,
this level was decreased and the iterations restarted. The
sequence of blurring kernel sizes was 31, 15, 7, 5, 3, 1,
with 10 optimisation iterations run at each level. The to-
tal processing time was of the order of a few minutes. No
attempts have yet been made to investigate the extent to
which all of these steps are truly required — it is almost
certain that a good solution can be obtained with far less
computation.

Figure 3 shows the geometry of the initial and final con-
figurations of cameras and object for the implemented so-
lution. Initially both cameras are positioned at the same
point in the world, so only one is visible.

Figure 4 shows camera views, referred camera views, and
error images for both the initial solution and final solu-
tion. For the six images corresponding to the initial con-
figuration, the first three relate to the transfer error for the
reference frame defined by the first camera view, and the
second three to that of the second camera view. Similarly
for the images corresponding to the final configuration.
At convergence the error map is seen to be approximately
homogeneous (at all points except those of high texture
gradient), indicating a near-zero error in most of the im-
age.

7. Conclusion

A method of estimating the relative viewpoints for a pair
of images of a compact object has been proposed. It uses
the assumption that the object in the world can be approx-
imated by an ellipsoid, and minimises a criterion based on
direct appearance of the object in the camera views. The
method works quite well, although in the current imple-
mentation the convergence is quite slow.

Future work will look to relaxing the structure require-
ment that the object be an ellipsoid. It is envisaged that
the method may be useful for initialising a direct struc-

ture and motion estimation procedure for small objects
with limited feature points. Within the framework it is
also possible to compensate for lighting variation and
highlights, which could improve the performance signif-
icantly.
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(a) Initial

view 1 view 2 (referred) errors

view 2 view 1 (referred) errors

(b) Final

Figure 4: Images, referred images, and errors for configuration, both initial and final.
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