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Abstract

A simple gaze estimation procedure based on ap-
pearance models is described. The method uses
minimum norm linear regression to directly relate
eye appearance to gaze direction. No explicit fea-
ture extraction is required.

The method is fast, requiring only linear operations
on the data. It is also accurate, in spite of using
only a small amount of training data.

1. Introduction

Appearance models make use of large sets of train-
ing samples to characterise the appearance of an
object from different viewing directions and dis-
tances [2]. The characterisation is obtained by pro-
jecting the image of the object being viewed into
a dominant linear subspace, and applying statisti-
cal reasoning to the projected data. The modelling
paradigm is unusual in that no attempt is made to
relate the views of the object to its 3-D structure
— the object is simply characterised by its appear-
ance from different views.

This paper describes a method for determining the
direction of a person’s gaze from a front-on image
of their face. Images are obtained from a camera
mounted on the top of a computer monitor. The
computational method used is appearance based,
in that the estimation makes use of the variation
in the appearance of an eye as the gaze direction
changes.

A constrained linear regression formulation is used
which entirely eliminates the need for systematic
feature extraction. Instead, linear features are learned
from the data, and these features are used directly
in subsequent gaze direction estimation. It is shown
that the constraint on the solution is equivalent to
selecting the minimum norm solution to an under-
constrained set of linear equations.

The conditions under which the method is devel-

oped are highly controlled — users are required
to keep their head as stationary as possible during
the entire process. Although appearance model
formulations can in principle be extended to cases
where the head rotates, tilts, or changes distance
from the camera, this is beyond the scope of the
work.

The structure of the paper is as follows. Section 2
describes in detail the method used for collecting
a dataset of face and eye appearances for different
gaze directions. The basic method for estimating
the gaze is presented in Section 3, and Section 4
provides some results in the form of a performance
analysis of the algorithm on the training dataset.
Section 5 describes an attempt to incorporate some
regularisation into the algorithm training, along
with some further results.

2. Dataset generation

A small Matlab application was written which dis-
plays a square at one of 36 locations on a 17 inch
computer screen. The locations are defined on a
6 ×6 grid, with increments of 0.2 times the height
and width of the screen in the vertical and hori-
zontal directions respectively. The user looks at
the square and presses the mouse button, at which
point a camera mounted on the top of the monitor
captures an image of his or her face and saves it
to disk. This process is performed once for each
of the 36 grid locations. In an attempt to avoid
systematic errors, the locations are presented to
the user in a random ordering. The distance from
the camera to the user’s face is a typical working
distance of approximately 0.5m.

An example image of the author’s face, looking at
the top left corner of the screen, is shown in Fig-
ure 2. The image is greyscale, with 576 pixels in
the horizontal direction, and 768 pixels vertically.
To avoid introducing additional degrees of free-
dom into the appearance model, in this work the
user is required to keep his or her head as static as
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Figure 1: Example of user looking at location
(0, 0) (the top left corner) on the screen.

possible during the entire capture process.

The appearance modelling paradigm could in prin-
ciple operate on the full image as displayed, and the
learning stage would find the variations in the im-
ages that correlate with the gaze direction. How-
ever, for this approach to be successful, a large
number of training images would be required to
average out spurious effects arising from chang-
ing facial expression and head position. To keep
the analysis simple, the gaze estimation was there-
fore performed entirely from the image of the left
eye.

To this end, subimages of the left eye were ex-
tracted from each of the face images. To ensure
normalisation of the data with respect to position,
it was decided to centre these subimages on the
pupil of the eye. Unfortunately, the task of locat-
ing the pupil in an image is not trivial, primarily
due to the presence of highlights and reflections on
the cornea. In an operational system this problem
would have to be overcome. However, since the
emphasis of this work lies in the appearance mod-
elling aspects, the locating the locating procedure
was simply performed by hand.

Figure 2 shows the extracted image data for each
captured gaze direction. Each eye subimage is of
dimension 128 × 64, and can therefore be consid-
ered to be a point in 8192-dimensional space. For
each image the true row and column coordinate of

the gaze is known. The combined set of 36 im-
ages and their ground truth coordinates therefore
constitute the training data for the algorithm.

3. Basic Formulation

Consider firstly the problem of estimating the ver-
tical position (or row) of the gaze. It is assumed
that a linear estimator can be used, so

ri = wT
r xi (1)

where ri is an estimate of the row position of the
gaze, and xi is a vector description of the eye im-
age, obtained for example by raster reordering.
Specification of the estimator involves determin-
ing a suitable value for wr .

The vector wr is 8192-dimensional, and 36 train-
ing pairs (xi , ri ) are available. Forming the data
matrix

X = (
x1 · · · xM

)
(2)

and the vector of dependent variable observations

yr =
⎛
⎜⎝

r1
...

rM

⎞
⎟⎠ , (3)

the condition on wr is therefore XT wr = yr . Here
the elements of yr are with respect to the coor-
dinate system described in the previous section,
taking values in the range [0, 1] in increments of
0.2. This represents 36 linear equations in 8192
unknowns, so the specification of wr is highly un-
derdetermined. Some form of regularisation is
therefore needed to arrive at a unique solution.

The observed data vectors xi for i = 1, . . . , 36
span a 36-dimensional subspace of the image space.
Each vector xi therefore lies in the span of X. Since
no data is observed outside of this subspace, it is
reasonable to require that the position estimate not
depend on components of the data outside of this
subspace. A suitable constraint on the vector wr

is therefore that it too lie in the span of X. In this
case the required vector can be written in the form
wr = Xθ r for some θr .

Under this condition the problem becomes well-
posed: the condition that must be satisfied on the
training data is

XT Xθr = yr . (4)

Here θ r is 36-dimensional, so if XT X is full-rank
then a single unique solution exists. Solving, θ r =
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Figure 2: Dataset of images of left eye, centered on the pupil.

(XT X)−1yr , so the final solution can be written as

wr = X(XT X)−1yr . (5)

It is observed that this is just the minimum norm so-
lution of the underconstrained linear system XTwr =
yr [1, p. 412].

The use of minimum norm solutions is common
when dealing with underconstrained systems of
equations. However, justification for this partic-
ular choice from a multitude of other candidate
solutions is seldom explicitly provided. The for-
mulation presented completely justifies the mini-
mum norm solution to the gaze direction problem
based on linear subspace principles.

Figure 3(a) shows a representation of the vector
wr for predicting the vertical component of the
gaze from an eye subimage. In order to estimate
the gaze from a new image, a subimage of the left
eye must be extracted, again centred on the pupil,
and the inner product formed between the pixels of
the subimage and the corresponding elements of
this feature image. The result of this operation is
the required estimate for the vertical component of
the gaze. Similarly, the feature wc for estimating
the horizontal component of the gaze is shown in
Figure 3(b).

Apart from the process for locating the centre of
the eye, the total computational requirement for
the gaze estimation procedure is therefore 2×8192
multiply operations, and an equal number of addi-
tions.

4. Results

The dataset used in developing the gaze estimation
procedure was quite limited, consisting in total of
36 images corresponding to 36 different gaze di-
rections. In order to evaluate the performance of
the method, a hold-one-out cross validation pro-
cedure was therefore used on the training data.
This involves removing one of the images from
the dataset, training the gaze classifier on the re-
maining samples, and testing the resulting system
on the held-out sample. Figure 4 shows the vec-
tor differences between the actual gaze position
(marked by circles) and the estimated gaze posi-
tion for each of the hold-out cases.

An estimate of the overall error can be obtained by
averaging over the errors obtained for each hold-
out case. The RMS value of the error magnitude
across all estimates for the dataset was 0.0927.
However, this error estimate is highly conserva-
tive due to the sparseness of the training set —
since only a single sample exists for each gaze po-
sition, the process of holding out a sample means
that information regarding that specific gaze di-
rection is entirely missing. It therefore has to be
inferred from neighbouring gaze directions. One
would therefore expect quite considerably better
performance with the full training set.

It is also apparent from the results that errors tend
to be larger near the edges of the image. This is
explained by the fact that results in these regions
have to be obtained by extrapolation from avail-
able data samples. In contrast, within the viewing
area an interpolation procedure is implied, which
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(a) Vertical gaze feature wr .
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(b) Horizontal gaze feature wc.

Figure 3: Appearance-based features for linear re-
gression.

is better-posed and more accurate.

It must be noted that the results here have been
based on the assumption that the head is entirely
stationary during the whole capture process. Thus
no attempt has been made to use the observed po-
sition of the eye in the image to correct for move-
ment - once the pupil has been located, the ex-
tracted subimage of the eye constitutes the only
input to the algorithm. Since eye appearance al-
most certainly relates to viewing direction rather
than position, gaze estimates should include a cor-
rection component based on the observed eye po-
sition. No attempt has been made to include such
a correction.
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Figure 4: Gaze position estimates using conserva-
tive hold-one-out procedure.

5. Attempted regularisation

The proposed solution used a reasonable subspace
constraint to reduce a system of 36 equations in
8192 unknowns to one of 36 equations in 36 un-
knowns. This is sufficient to make the estimate
unique, but trying to estimate 36 parameters from
36 unknowns may leave the problem sensitive to
noise and outliers. Some means of regularising the
solutions space further is therefore desirable.

In light of the earlier discussion, a reasonable op-
tion may be to require that the vectors wr and wc

be further constrained to lie in a subspace with di-
mensionality smaller than 36. The emphasis then
lies in deciding on a criterion for the subspace se-
lection procedure.

A very simple selection procedure involves per-
forming principal component analysis on the set
of training images, and restricting the solution to
the regression to lie in the dominant subspace. In
this case a regularisation parameter is introduced,
namely the dimension d of the reduced subspace.
If the value of d approaches the dimension of the
training set, in this case 36, the performance will
tend to that of the full-rank case. However, as the
value is reduced it is conceivable that some regu-
larity will be imposed, since a smaller number of
variables are in effect being estimated. Of course,
overly small values of d will lead to poor perfor-
mance, since the majority of the appearance data
is then ignored in the estimation.

Figure 5 shows a plot of the RMS hold-one-out
error estimate for varying d . The error remains
approximately constant as d is decreased from 36
down to about 10. It does not seem, however,
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Figure 5: Error estimate versus subspace dimen-
sion for PCA-selected basis.

that better generalisation is being obtained from
the smaller values. One quite likely reason for the
lack of improvement in performance as d is de-
creased may be because the principal component
subspace was already estimated from the data, so
the selection process does not yield any regular-
ity. Further analysis is required to confirm or deny
this postulate. In any event it seems that the pre-
scribed regularisation method has little merit. De-
tailed gaze position estimates for the case of d = 9
are shown in Figure 6.
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Figure 6: Gaze position estimates for PCA-
selected subspace with d = 9.

6. Conclusion

A method has been presented for estimating the
direction of a person’s gaze from the appearance
of their eyes. The formulation is admittedly ex-
tremely simplistic, with the requirement that the
subject keep their head stationary and square to

the camera. Nonetheless, surprisingly good re-
sults are obtained.

The use of appearance modelling type methods in
the formulation seems valuable, particularly when
contrasted with more classical methods based on
feature extraction and pattern classification. In-
stead, the method provides a completely automatic
means of learning a simple linear transformation
on the data which provides the required estimates.
It is additionally fast and accurate.

The method can be extended to deal with addi-
tional degrees of freedom, such as head rotation,
tilt, and distance from the camera. It is quite likely
however that considerably more training samples
will be required in this case, to ensure that the full
range of appearances are accommodated.
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