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ABSTRACT

The uniformly most powerful invariant (UMPI) test is derived for
detecting a target with unknown location in a noise sequence. This
test has the property that for each possible target location it has the
greatest power of all tests which are invariant to cyclic permuta-
tions of the observations. The test is compared to the generalised
likelihood ratio test (GLRT), which is commonly used as a solution
to this detection problem. Monte-Carlo simulations show that the
powers of the two tests are comparable, thereby justifying near-
optimality of the GLRT.

1. INTRODUCTION

The problem of detecting a known target with unknown location
in a sample of noise often arises in signal and image processing.
A common solution involves the use of a generalised likelihood
ratio testing (GLRT) formalism, where the target location is treated
as an unknown parameter. An estimate of the location is made as
part of the detection procedure, and the value obtained is used in a
conventional likelihood ratio test (LRT). The resulting test has no
optimality properties.

In this paper, an invariance argument is used to derive the uni-
formly most powerful invariant (UMPI) test for the specific case
where shifts are defined to be circular. The target is therefore as-
sumed to be known only to within an arbitrary cyclic permutation
of its elements. For discrete-time signals is the natural counter-
part to unknown location (and shift invariance) in continuous time.
The performance of this detector is compared to the GLRT, which,
since it shares the same invariances, necessarily has lower power
than the UMPI detector. It is shown in at least some cases of prac-
tical interest that the difference between the UMPI test and the
GLRT is negligible. This is a significant result, since it indicates
that for the cases investigated the GLRT is near-optimal. It is also
demonstrated that this conclusion could not have been reached by
comparing the GLRT to the ideal matched filter, which assumes the
location of the target known.

2. PROBLEM FORMULATION

It is assumed that N samples x1, . . . , xN of data are observed. Un-
der hypothesis H0, these samples are independent and identically
distributed as N[0, σ 2] — a more general case is considered in Sec-
tion 8. Under hypothesis H1, some shifted version of the prototype
target signal s1, . . . , sN is added to the noise samples. Since for
discrete-time observations it is natural to regard shifts as cyclic per-
mutations of the elements, under H1 the mean of the observations
is some cyclic permutation of s1, . . . , sN .

The problem is most easily described in vector notation: letting
x = (x1, . . . , xN )T , n = (n1, . . . , nN )T , and s = (s1, . . . , sN )T ,
the hypotheses are

H0 : x = n (1)

versus
H1 : x = Pθ s + n, (2)

where n : N[0, σ 2I] and P is the cyclic permutation matrix
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It can be seen that premultiplying the column vector x by P cycli-
cally permutes the elements one position downwards:
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Thus, under H1 the mean of x is some cyclic permutation of the
target vector s, where the order of the permutation is unknown. θ

is assumed to be an unknown deterministic quantity, and without
loss of generality can be restricted to take on integer values from 0
to N − 1.

3. GLRT SOLUTION TO THE PROBLEM

The GLRT is commonly used for composite hypothesis testing
problems: maximum likelihood estimates are made of the unknown
parameters under each hypothesis, and the resulting density func-
tions used in a conventional likelihood ratio test. For the case of
unknown target location, the GLRT statistic is

3GLRT(x) = ln
maxθ∈[0,N−1] p1(x|θ)

p0(x)
, (5)

where p0(x) is the probability density function (pdf) of the obser-
vation x under H0, and p1(x) the pdf under H1. Assuming the
distributions given in the previous section,

3GLRT(x) =
1

σ 2

{

max
θ∈[0,N−1]

(Pθ s)T x −
1

2
sT s

}

. (6)

The GLRT compares this statistic to a threshold, with H1 being
decided when exceeded:

max
θ∈[0,N−1]

(Pθ s)T x
H1
>
<
H0

σ 2η +
1

2
sT s. (7)



The quantity on the left of this test is simply the maximum of the
inner products between the observation x and all possible cyclic
permutations of the target s. Since the null hypothesis is indepen-
dent of the unknown parameter θ , the threshold can be chosen such
that the test has a constant false alarm rate.

4. INVARIANCE OF THE HYPOTHESIS TESTING
PROBLEM

Since no uniformly most powerful (UMP) test exists for the problem
outlined, in the search for an optimal characterisation it is necessary
to restrict the class of permissible tests. For the problem considered,
it is natural to require that the hypothesis test be constrained such
that the same decision be made for arbitrarily shifted versions of
any given observation. The transformation group for the problem
is therefore

�
= {g(x)|g(x) = Pkx, k = 0, . . . , N − 1}. (8)

This places an equivalence on the observations {P0x, . . . , PN−1x},
which is natural on account of the symmetry of the elements under
each hypothesis. Thus the observations (x1, . . . , xN−1, xN ) ≡

(xN , x1, . . . xN−1) ≡ · · · ≡ (x2, . . . , xn, x1) are all considered to
be equivalent by the detector. Enforcing this equivalence is in no
way restricting the form of the test in any unreasonable way.

The testing problem is invariant to the group
�

: under both
hypothesis x is MVN with covariance matrix σ 2I. However, under
H0 the mean is 0, and under H1 it is one of the elements in the set
{P0s, . . . , PN−1s}. Consider now an element gk(x) = Pkx of the
group

�
. Since this is a linear transformation of x, the distribution

of y = gk(x) is N[Pk Ex, σ 2Pk(Pk)T ], where Ex is the expected
value of x. Noting now that (Pk)T = PN−k = P−k ,

y : N[Pk Ex, σ 2I]. (9)

Thus under H0 the mean of the transformed vector y is 0, and
under H1 it is an element of the set {PkP0s, . . . , PkPN−1s} =

{P0s, . . . , PN−1s}. The transformation gk therefore preserves the
form of the distribution and retains the partition of the parameter
space under each hypothesis. Since this conclusion is valid for all
elements g ∈

�
, the hypothesis testing problem is invariant-

�
.

5. MAXIMAL INVARIANT STATISTIC FOR THE
PROBLEM

To continue, a maximal invariant statistic for the problem is re-
quired. One such statistic can be obtained by defining Pmax (x) to be
that function which cyclically permutes the elements of x until the
element of x with the maximum value is in the first position. Note
that for the distributions being considered here Pr{xi = x j } = 0 for
i 6= j , so the maximum element of x will be unique with probability
1.

The statistic Pmax(x) is clearly invariant to the group
�

: since
one of the elements of x is always maximum and elements of

�
simply permute the observation x cyclically, Pmax[g(x)] = Pmax[x]

for all g ∈
�

. Additionally, for the same reasons, the condition
Pmax[g(x1)] = Pmax[g(x2)] means that x1 and x2 must be related
to one another through a cyclic shift, so x2 = g(x1) for some g ∈

�
.

Thus the statistic Pmax(x) is maximal.
As explained by Lehmann [1] or Scharf [2], the significance of

this result is that only functions of the maximal invariant statistic
have to be considered when looking for a test which is invariant to�

.

6. DISTRIBUTION OF THE MAXIMAL INVARIANT
STATISTIC

The method described by Hogg and Craig [3, p. 142] in relation
to order statistics provides a means of determining the distribution
of the maximal invariant. Since two elements of x are equal with
probability zero, the joint probability density of x can be defined
to be zero at all points which have at least two of their coordinates
equal. The set � where the probability density of x is nonzero can
then be partitioned into N mutually disjoint sets:

� 1 = {x|x1 = max(x1, . . . , xN )}

.

.

. (10)

� N = {x|xN = max(x1, . . . , xN )}.

Thus � i is the set of all points in � N which have no elements equal,
and have xi as their largest element.

Consider the function y = Pmax(x). This defines a 1 − 1
transformation of each of � 1, . . . , � N onto the same set � , where
it so happens that � = � 1. For points in � i , the transformation
y = Pmax(x) cyclically permutes the elements of x upwards by
i − 1 positions. Thus the inverse function is x = Pi−1y, which
simply rotates them back downwards by the same amount.

Letting Ji be the determinant of the Jacobian of the inverse
transformation corresponding to � i , it can be seen that

Ji = |Pi−1|. (11)

Now by the structure of Pi−1, it is always possible to obtain an
identity matrix by means of a number of row exchanges. Thus it
must be the case that Ji = +1 or Ji = −1. Denoting the probability
density of x by fx (x), the results of this section can be combined
to yield the corresponding pdf fy(y) of y = Pmax(x) as [3, p. 143]

fy(y) =

{

∑N−1
k=0 fx (Pky) y1 = max(y1, . . . , yN )

0 otherwise.
(12)

The distribution of the maximal invariant statistic can now be
found under each hypothesis. Under H0,

fx (x) = (2πσ 2)−N/2e
− 1

2σ2 xT x
. (13)

Therefore the distribution of y = Pmax(x) is

fy(y) =











N(2πσ 2)−N/2e
− 1

2σ2 yT y

y1 = max(y1, . . . , yN )

0 otherwise.

(14)

where use has been made of the relation (Pk)T = P−k . When H1
is in force, the mean of the observation takes some value in the set
{Pθ s, θ = 0, . . . , N − 1}. The probability density of x is therefore

fx (x) = (2πσ 2)−N/2e
− 1

2σ2 (x−Pθ s)T (x−Pθ s)
, (15)

where θ is some integer in the range 0 to N − 1. Substituting into
the expression for fy(y) gives

fy(y) =











∑N−1
k=0 (2πσ 2)−N/2e

− 1
2σ2 (Pky−Pθ s)T (Pky−Pθ s)

y1 = max(y1, . . . , yN )

0 otherwise.
(16)



The first case in this expression needs to be looked at in more detail:
under the condition y1 = max(y1, . . . , yN ),

fy(y) = (2πσ 2)−N/2e
− 1

2σ2 (yT y+sT s)
N−1
∑

k=0

e
1

σ2 sT P−θ Pky
. (17)

Using the fact that P−l = PN−l and noting that the sum in this
expression involves the inner product between s and all cyclic per-
mutations of y, the range of summation can be modified:

N−1
∑

k=0

e
1

σ2 sT P−θ Pky
=

N−1
∑

l=0

e
1

σ2 sT Ply
. (18)

This yields the final pdf for y under H1 as

fy(y) =











(2πσ 2)−N/2e
− 1

2σ2 (yT y+sT s) ∑N−1
l=0 e

1
σ2 sT Pl y

y1 = max(y1, . . . , yN )

0 otherwise.
(19)

Under both hypotheses the density of the maximal invariant is in-
dependent of the unknown parameter θ , as required.

7. OPTIMAL INVARIANT LIKELIHOOD RATIO TEST

Once the observation x has been mapped onto the corresponding
maximal invariant statistic, a likelihood ratio test can be performed
on this quantity. The likelihood ratio for the problem is

l(y) =
(2πσ 2)−N/2e

− 1
2σ2 yT y

e
− 1

2σ2 sT s ∑N−1
l=0 e

1
σ2 sT Pl y

N(2πσ 2)−
N
2 e

− 1
2σ2 yT y

=
1

N
e
− 1

2σ2 sT s
N−1
∑

l=0

e
1

σ2 sT Ply
. (20)

The log-likelihood ratio is therefore

L(y) = − ln N −
1

2σ 2
sT s + ln

N−1
∑

l=0

e
1

σ2 sT Ply
. (21)

The best invariant test involves comparing this ratio to a threshold,
and deciding H1 when exceeded:

ln
N−1
∑

l=0

e
1

σ2 sT Ply
H1
>
<
H0

η + ln N +
1

2σ 2
sT s. (22)

This test is uniformly most powerful out of all tests which share
the same invariances. Thus no other test that is invariant to cyclic
permutations of the observations can perform as well, regardless
of the value of the unknown parameter θ . Since the invariance is
reasonable for the problem, it is fair to assert that this is the optimal
test.

Again noting that the summation in the expression for this test
goes over terms involving inner products between all cyclic permu-
tations of y with s, it is evident that

N−1
∑

l=0

e
1

σ2 sT Ply
=

N−1
∑

l=0

e
1

σ2 sT Plx
(23)

Thus the test in Equation 22 can be written in terms of the original
data observation x.

An estimate of the parameter θ is explicit in the GLRT of equa-
tion 7. Thus the most likely location of the detected signal is also
provided by the test. For the UMPI test, however, the dependence
on the parameter is completely eliminated from the problem by the
invariance condition. At no point does this test make use of an
estimate of θ , either implicitly or explicitly.

8. EXTENSION TO CORRELATED NOISE

The previous results can be extended to the case where the noise
has a known circulant covariance matrix. This is a special case
of the general stationary condition, where the matrix is Toeplitz.
The constraint that the covariance matrix be circulant is required
to ensure invariance of the hypothesis testing problem to cyclic
permutations.

Suppose that the hypotheses are as in equations 1 and 2, but
with the noise distributed as n : N[0, C]. Applying the (as-
sumed invertible) whitening transformation z = C−1/2x to the
observed data, the hypotheses become z : N[0, I] under H0 and
z : N[C−1/2Pθ s, I] under H1. Now, if C is circulant then C−1/2

is also circulant, so C−1/2 = Pθ C−1/2P−θ . Thus the distribution
under H1 is z : N[Pθ C−1/2s, I]. This can be recognised as the
problem of invariant detection of the modified signal C−1/2s in
white noise. The test given in the previous section can therefore be
used in this modified problem, and is once again UMPI.

Finally, it is noted that the components of a random vector with
a circulant covariance matrix can be diagonalised by means of the
discrete Fourier transform (DFT). This can provide a fast method
of calculating the required test statistic.

9. COMPARISON OF GLRT AND UMPI TEST POWERS

Summarising the results of the previous sections, the GLRT is

tGLRT(x) = max
θ∈[0,N−1]

(Pθ s)T x
H1
>
<
H0

ηGLRT, (24)

and the UMPI test is

tUMPI(x) = ln
N−1
∑

l=0

e
1

σ2 sT Ply
H1
>
<
H0

ηUMPI. (25)

The thresholds ηGLRT and ηUMPI are constants which are chosen
to yield the desired false alarm rate.

The components of the sum in the UMPI test are statistically
dependent upon one another, and each have a lognormal distribu-
tion. The UMPI statistic is therefore given by the logarithm of
the sum of dependent lognormal variates. Sums of dependent and
independent lognormal random variables have been discussed at
some length in the literature, and it is well-known that no closed
form exists for their distribution [4]. Maxima of correlated normal
variates are similarly intractable.

To avoid the details of analytical approximations, Monte-Carlo
methods are used to estimate the receiver operating characteristics
(ROCs) for each of the tests. Targets used for testing purposes
are shown in Figure 1. Three scalings of each of these targets are
considered, corresponding to energies of 2, 4, and 8. In all cases,
the additive noise is uncorrelated zero-mean Gaussian noise with
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Fig. 1. Targets used in Monte-Carlo simulations. The signals are
Gaussians centered on 32 with standard deviations of 2, 4, and 8.

unit variance. The test properties are estimated from a total of
50000 simulated noise and target plus noise samples in each case.

Results are shown in Figure 2, each plot demonstrating ROCs
for one specific energy. The line styles used in these plots corre-
spond to those used in Figure 1 for each of the targets. The ROC
curves for both the GLRT and the UMPI tests are plotted in the
same style, with the UMPI ROC always being the upper one. It is
seen that the performance of the GLRT is almost as good as that of
the optimal UMPI test. This indicates near-optimality of the GLRT
solution.

Also shown in the plots in Figure 2 are the ROCs for the ideal or
clairvoyant matched filter, which assumes prior knowledge of the
target location. This represents an upper bound on the performance
of any test. Since matched filter performance depends only on the
energy of the target being detected, a single curve can characterise
the test properties for all three targets at any constant energy. It is
observed that the performance of the GLRT is substantially worse
than that of the matched filter, particularly for the more localised
targets. In the absence of the UMPI test results, this could raise
some doubt as to the effectiveness of the GLRT for the problem.
However, the UMPI test results indicate that the decrease in per-
formance is caused by the target location in fact being unknown,
rather than by the GLRT being significantly suboptimal.

10. DISCUSSION AND CONCLUSIONS

In this paper a test for detecting a target with unknown location
in white noise is derived, which is uniformly most powerful in
the class of all tests which are invariant to cyclic permutations of
the observations. The test can be extended to the correlated noise
case, as long as the covariance matrix is circulant and known. It
is demonstrated for some specific cases of interest that the perfor-
mance of this test is not significantly better than that of the GLRT,
which is a suboptimal but more common solution to the problem.
This provides a measure of justification for the use of the GLRT in
problems of detecting targets with unknown location in noise.

Invariance to cyclic permutations is not always strictly appro-
priate for all unknown signal location problems. Some problems
are not inherently cyclic, especially those which result from dis-
cretisation of continuous-time problems. A UMP test cannot be
expected for these situations: invariance is essentially a symmetry
condition, and can necessarily only be applied to situations which
exhibit the required symmetries. Nonetheless, the results given in
this paper provide insight into the nature of the detection process,
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Fig. 2. ROC curves for detection of the test targets scaled to have
energy of 2 (top), 4 (middle), and 8 (bottom).

and lend credibility to the GLRT.
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