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Abstract— X-rays have played a vital role in both the medical 

and security sectors. However, there is a limit to the amount of 

radiation a body can receive before it becomes a health risk. 

Modern  low  dose  x-ray  devices  operate  using  a  c-arm  which 

moves  across  the  entire  human  body.  This  paper  shows  how 

radiation  can  be  reduced  on  a  human  body  by  isolating  the 

region that  requires exposure. This work is based on a medical 

scanner that is still under development and therefore a prototype 

of the scanner is developed for running simulations. A camera is 

attached onto the prototype and used to point out the regions that 

are required to be scanned. This is both faster and more accurate 

than the traditional method of manually specifying the areas, as 

it also accommodates minor movements from the patient.  An 

analysis is performed on the automation process as there are 

many variables such as speed, accuracy and searching thresholds 

that need to be catered for in the experiment. It is found that the 

correct region of interest can be located with the use of reliable 

feature points and that certain regions of the body are easier to 

locate than  others. Currently, partial scans are done manually 

and this is a step forward towards automating the process 
completely. 

I.  INTRODUCTION 

 Digital image processing has become a field of growing 

interest, especially in industries such as the medical sector. 

Digital image processing is achieved by a set of computer 

algorithms to perform image processing on digital images [1] 

to aid in the analysis of the human body. Image processing can 

be in the form of analysis or manipulation on digital images.   

 
 Lodox Systems designed and developed its medical x-ray 

scanners which originated from the Scannex [2], an x-ray 

security scanner developed by De Beers, to prevent diamond 

theft within the mining industry [3]. The Lodox scanners are 

unique in that they can produce a full body x-ray image within 

minutes after a single 13 second scan. Lodox Systems 

currently has a medical scanner in the market, called the 

Statscan, and is in the process of developing their latest 

medical device, the Versascan. The Versascan is designed to 

be a multi-purpose, self-contained and transportable digital 
radiography system for general and orthopedic radiography. It 

is a vertically-orientated scanner, so the patient is also 

vertically positioned. The apparatus used to capture data needs 

to mimic that of the Versascan as closely as possible, for 

experimental purposes. A simple garage motor track, 

vertically-orientated, is used to capture video data of subjects, 

with the aid of an attached camera. For the remainder of the 
paper, the garage motor track is referred to as the c-arm unless 

otherwise specified.   

 

The Versascan can perform partial scans of the human body, 

but these have to be done manually. Performing partial scans 

manually leads to human errors when having to specify the 

starting and stopping points, using the laser, which is built in 

the c-arm, as a guide and requires that the patient stand very 

still during the scan. This paper aims to provide the 

information needed in order to perform a partial scan of the 

human body. This proposed setup uses the camera to capture a 

full body image of the patient during a pre-scan where x-rays 
are disabled. The operator uses the full body image to mark 

the region that requires scanning. Using a camera to locate the 

region of interest, in real-time, provides an allowance for the 

patient to move slightly. Therefore the main aim of this paper 

is to find whether it is possible to perform a partial scan, on 

the Versascan, with the aid of a camera. It is proposed that the 

camera be attached to the c-arm, above the x-ray source. 

 
There are two important practical aspects, namely the 

workflow for the radiographer and the processes that occur to 

locate the marked region. Figure 1 is a flowchart containing 

both aspects for performing a partial scan automatically. The 

elliptical elements show the steps taken by the radiographer 

and the rectangular elements indicate what processes are 

performed, at each step, in order to locate the region of interest 

automatically. The workflow for the radiographer is important 

if the proposed modification is to be accepted for the 

Versascan design. The reason is because the radiographer 
needs to know what the procedures are in order to perform a 

partial scan and locate the region of interest automatically. 

 

Figure 1: Flowchart of performing a partial scan automatically. 



This approach requires that there are pairs of video data in 

order to perform the relevant tests, one for the reference image 

and one for the scanned image to search for the region of 

interest. The pairs of video data are of patients in standard 

poses with slight adjustments to their stances so as to mimic 

minor movements in a realistic situation. 
 

Section II looks at relevant academic research from various 

papers, articles, websites and books in the image processing 

field. A discussion of the entire proposed workflow for the 

radiographer and the processes to perform a partial scan 

automatically is given in section III. All assumptions and 

experiments performed are evaluated in section IV. Section V 

presents a summary of the entire paper with its findings, 

followed by a discussion of ways in which this work could be 

taken further. 

II. RELATED WORK 

A. Template Matching 

Template matching is commonly used for object 

recognition and stereo-matching. Template matching 

techniques compare portions of images against one another. 

Correlation values are calculated in the various positions that 

indicate how well the template matches the image. Correlation 

is a measure of the degree to which two variables agree, not 

necessarily in actual value but in general behaviour.   

 

A common way to calculate the position       of the object in 
the search window is to evaluate the cross correlation 

coefficient value, c, at each point       for function f and the 

template t. The positions       represent the shift of u in the 

x-direction and by v in the y-direction. Cross correlation is 

motivated by the Euclidean distance which is a measure of 

similarity and is shown as 

 

        √∑                       
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Euclidean distance is only appropriate for data measured on 

the same scale as no adjustments are made for differences in 

scale. Equation 2 is made by expanding d and is shown as, 
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In equation 2, if        and                are 

standardized, the sums are both equal to a constant value n. 

Therefore, ∑                 is the only non-constant 

term just as it is in the reduced formula for the correlation 
coefficient: 
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Lewis states that there are a few disadvantages to using the 

cross correlation coefficient for a measure of similarity [4]. 

Some of the disadvantages mentioned are that the range of the 

correlation coefficient value is dependent on the size of the 

feature and that it is not invariant to changes in scale and 

lighting conditions. Lewis states that the difficulties with the 

cross correlation can be overcome by normalizing the image to 

unit length [4]. The normalized cross correlation is shown as 
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where  ̅ is the mean of the feature and   ̅   is the mean of 

       . Normalized cross correlation is a popular measure of 

similarity as its easy hardware implementation makes it useful 
for real-time applications. Work has been done on increasing 

the performance of normalized cross correlation with the use 

of basis functions. Briechle and Hanebeck proposed using 

rectangular basis functions where the number of calculations 

depend linearly on the number of basis functions used [5]. The 

specific example used in [5] has an outcome that results in a 

computational reduction of 47 times using basis functions.  

 

There have been some image matching methods performed 

based on normalized cross correlation [6, 7, 8]. However, 

these methods do not perform well as normalized cross 
correlation is not invariant to rotation. Zhao, et al. propose a 

hybrid method, consisting of both feature points and 

templates, to improve the results of normalized cross 

correlation [9]. The hybrid method consists of using feature 

points on the two images to determine the rotation and scale 

changes according to the characteristic scale and dominant 

direction of the points. The invariant normalized cross 

correlation is then applied at the corresponding feature points. 

 

The main difference between the works of [9] and [5] is that 

the one potentially eliminates the measure’s variance and the 

other increases its performance by reducing its computation 
time. 

 

Another application for template matching is not only to 

classify an object but also to track it. Object tracking is usually 

categorized into two classes. One is where tracking takes place 

while the camera is stationary and the other is when the 

camera is moving. The most important characteristic is that to 

make a real-time system, the image captured by the camera 

must be processed before the next frame is digitized. 

 

Pal and Biswas propose an automated correlation based 
tracking approach using edge strength and Hausdroff Distance 

Transform (HDT) technique for tracking moving targets [10]. 

The approach produces a complete real-time video tracking 

system for both detecting and tracking moving targets from 

optical image sequences. 

 

Other methods used for detecting objects can be seen in [11] 

and [12] with differences being that the object’s shape is 

known. Cole et al. describe how a 2D model can be used [11] 



and Gupta et al. show how detecting objects can be done with 

a 3D model [12]. 

B. Feature Matching 

The feature-based matching approach is the easiest method 

for finding image displacements. The method finds features in 

an image, such as edges and corners, and calculates the change 

in distances of the position of the feature points from the 
original image to another.  

 

When video data is considered, the displacement is calculated 

from frame to frame. This is basically a two-step approach. 

Firstly, feature extraction is performed on two or more 

consecutive frames, to both reduce the amount of information 

to be processed and to obtain a higher level of understanding 

of the image scene. Secondly, these feature points are matched 

between frames to find any change in the positions of the 

points. Generally, changes in feature point positions between 

frames usually mean a movement of some object or 

background.  
 

Feature-based matching is usually preferable when an image 

has strong features, such as sharp corners, in it. A feature-

based approach is generally faster than a template-based 

approach because it does not consider the entire image but 

rather only the feature points found.  

 

Edges indicate boundaries in an image, which makes them 

important for image processing. Edges in an image usually 

appear as intensity changes in pixels situated next to each 

other. There are many different methods of edge detection but 
they can be grouped into two categories, gradient-based and 

Laplacian-based. Mlsna and Rodriguez show that the 

difference between the two categories is that the gradient 

methods consider maximum values in the first derivative of an 

image and Laplacian methods look for zero crossings in the 

second derivative of an image [13]. 

 

It is shown in [14] that, in practice, a zero crossing filter is 

created by performing Gaussian smoothing followed by 

Laplacian filtering. The Laplacian-of-Gaussian (LoG), which 

is the convolution mask of the zero crossing operator, can be 
obtained from using various orders of linear filters and the 

rotational symmetry of Gaussian filter. 

 

Few examples of other edge detectors are Sobel, the Canny, 

the Local Threshold and Boolean Function Based edge 

detectors [15] and color edge detection using euclidean 

distance and vector angle [16]. Nadernejad et al. have 

performed a greater analysis of various edge detectors, 

including the ones previously mentioned [17]. 

 

Corners are the intersections of two edges of sufficiently 

different orientations. Therefore corners contain two 
dimensional features and can potentially represent object 

shapes. The ability to represent object shapes play important 

roles in matching and pattern recognition. 

 

There are many different corner detectors that exist such as the 

Principal Curvature-Based Region (PCBR) detector [18] and 

the Harris operator [19]. Corner detectors have many 

applications in motion tracking, stereo matching and image 

database retrieval. Mokhtarian and Suomela modify the corner 
detector to make it more robust, based on the curvature scale-

space (CSS) representation [20]. The quality of a corner 

detector is determined by its ability to detect the same corner 

in multiple images of the same scene but under different 

conditions, like lighting, translation, rotation and other 

transformations. 

 

The Harris corner detector is a good method to use to detect 

corners as it provides good quality corners under varying 

rotation and illumination and may detect interest points other 

than corners. For the purpose of this paper the Harris corner 

detector is considered due to its strong invariance to rotation, 
scale, illumination variation and image noise [21]. 

 

Harris and Stephens propose combining the corner and edge 

detector based on the local auto-correlation function to obtain 

feature points for tracking algorithms [22]. Weijer, et al. 

propose combining the two detectors by photometric quasi-

invariants [23] and Ando by gradient covariance [24]. Parks 

and Gravel provide a detailed comparison of over 10 various 

corner detectors including ones mentioned previously [25]. 

 

Lowe developed and published the algorithm called Scale 
Invariant Feature Transform (SIFT) to detect and describe 

local features in images [26]. The University of British 

Columbia has patented this algorithm but it is available to the 

public for research purposes only and there are papers 

available by Lowe that give a better understanding of the SIFT 

keypoint detector method [27, 28, 26]. The SIFT algorithm is 

robust because, as the name suggests, it is able to handle 

image transformations like scale, rotation and deformation. 

There are four steps that SIFT goes through to transform 

image data into scale invariant coordinates relative to local 

features [26]. Aly has shown that SIFT can be used to find 

feature points in a face to identify a person for surveillance 
and access control [29]. There are various other applications 

that use SIFT such as image stitching [30], video tracking [31] 

and 3D modeling [32, 33]. 

 

The advantages and disadvantages of the two matching 

methods are mentioned in this section in order to get a better 

understanding of them. A good understanding of the matching 

methods is necessary in order to create an accurate and 

reliable online search to locate a region of the body. 

III. WORKFLOW PROCESSES 

To achieve a better understanding of the entire proposed 
system, the methods used are broken up into separate 
processes. Figure 1 shows the radiographer’s workflow where 
the respective processes are performed at each stage. 

 



A. Reference Image 

The reference image is the first image displayed on the 

workstation and this is where the radiographer marks the 

region of interest. The reference image is obtained during the 

c-arm’s first pass by stitching the initial video captured from 

the camera at 60 fps. Figure 2 shows examples of stitched 

reference images. Routine views are generally in the 

anteroposterior and lateral positions. Figures 2a and 2b show 

examples of the anteroposterior position and figures 2c and 2d 

show the lateral position. 

 (a)  (b) (c)  (d) 
 

Figure 2: Examples of reference images. (a) and (b) Anteroposterior position. 

(c) and (d) Lateral position. 

 

The video captured during the first pass consists of 780 

frames. The reference images shown in this paper are 

constructed from video data consisting of 1080 frames. The 

reason for the additional 300 frames, or 5s, is due to the delay 

between operating the camera and the garage opener. It was 

found that the time taken for the workstation to configure the 

camera and begin capturing was inconsistent. To overcome 

this, a delay was implemented, such that after 3s of capturing a 

signal was sent to start the garage opener. The remaining 2s is 
used to cater for the approximate time taken for the slide to 

reach the other end. 

 

Image stitching is the process in which multiple images are 

aligned by various registration algorithms and blended 

together in a seamless manner [34]. The video datasets were 

captured by a camera mounted on a vertically-orientated 

garage motor track. The reference image was created by 

taking a number of rows, r, at each frame captured. The rows 

that are used for stitching the reference image are at the centre 

of every frame. The method of stitching performed uses a 

number of rows at each frame and stacks them underneath or 
above each other, depending on the scan direction, i.e. pass 1 

or pass 2. The result of taking into account the centre rows of 

the video data produces the reference image. 

 

By using the centre rows of every frame, it is effectively 

providing the information that is directly in front of the 

camera. However, for the second pass, the camera would have 

to ’look-ahead’ to identify the area before the c-arm reaches it. 

Using the proposed camera configuration, a maximum look-

ahead distance of 179.13mm and 435.13mm is achieved if the 

c-arm travels downwards and upwards respectively for its 
second pass. Therefore, a recommendation is made that the c-

arm’s first pass start from the top moving downwards and 

from the bottom moving upwards for its second pass.  

 
The method of image stitching mentioned causes some concern 
for data loss as it simply takes a number of rows at the centre in 
each frame and constructs the reference image from that. It is 
seen that by considering two rows at a time, a loss of only 
0.16% is obtained which is seen to be minimal. 

B. Finding Feature Points 

Feature points are important as they are used to locate the 

region of interest on the scanned image. However, one 

problem was found with this approach: when there is 
ambiguity or patterns present around the region of interest, 

corners are sometimes found at other locations that are 

visually similar. To remove corners that are either ambiguous 

or found in patterns, a need for more reliable feature points is 

necessary.  

C. Determining Reliable Points 

The process of determining reliable feature points occurs 

after the radiographer has marked the region of interest, as 

only the feature points which fall within the marked region are 

considered and the rest are ignored. Only feature points within 

the marked region are considered as these are the ones used to 

locate the region of interest on the scanned image.  

 

The approach for determining whether a feature point is 

reliable or ambiguous consists of looking at the 

neighbourhood of each point. A small window of size 15 × 15, 

centred at the detected corner, is considered. Template 
matching is then performed over the surrounding area of size 

75 × 75 to see whether there are other locations which have 

similar appearances. Normalized cross correlation is selected 

to measure how similar the feature point is to the background. 

Various thresholds have an impact on the resulting correlation 

value which determines how reliable each corner is and this is 

discussed in more detail in the next section. 

D. Locating the Region of Interest 

After the region of interest has been marked, the 

radiographer controls the c-arm to perform the second pass. 

The second set of video data is not only being stitched 

together, but also being used to locate the region of interest.  

 

In order to find the region of interest and provide the location 

to the x-ray source before it passes it, a search is required to 

take place ahead of the c-arm. Searching ahead of the c-arm is 

done by adjusting the stitching method during the second pass. 

Instead of using two rows at the centre of every frame, higher 
rows are considered. The look-ahead distance is not set to a 

constant value but is varied depending on the height of the 

marked region. In the case where the height of the marked 

region is greater than the maximum look-ahead distance, the 

maximum look-ahead distance is then considered. 

 

An online searching method is necessary in order to locate the 

region of interest in the scanned image efficiently and 



accurately. The time taken to locate the region of interest is 

important as it is necessary to identify the marked area before 

the c-arm reaches it. 
 

The time available for the online search is catered for with the 

varying look-ahead distance. In order to achieve accuracy 

within 2% source to image detector distance (SID), the actual 

region scanned as a result of the search needs to fall within a 

distance of 20mm from the region marked by the 

radiographer.  

 

The approach is to use reliable points found within the region 

of interest, on the reference image, in order to identify the 
respective area in the scanned image. A template of size 15 × 

15 pixels centred on each reliable point is used for the search 

in the scanned image. To cater for minor movements, a search 

window of size 51 × 51 pixels is used to provide an allowance 

of minor movements of 25 pixels in any direction. One factor 

that determines the size of the search window is the accuracy 

as a distance error of more than 20 pixels is greater than 5%, 

which is regarded as a failed test. 

 

The search for the matches for the reliable points on the 

scanned image yields normalized correlation coefficient 
values at each point within the search window. The point with 

the highest match value is regarded as the best match. If the 

highest match value is greater than some search threshold, 

then that point is considered a reliable match. If it is below the 

threshold then the corresponding match is determined to have 

not been found and the match pair is thus ignored. Once a 

specified number of corresponding reliable points are found, 

an estimate of the marked region on the scanned image can be 

calculated.  

 

The estimated location of the marked region on the scanned 

image is calculated with the use of the pixel coordinates of 
both the original and the corresponding match points found. 

First, the pixel distances are measured, both horizontally and 

vertically, between each reliable point and the marked region 

on the reference image. These distances are then transferred to 

the corresponding match points and are used to calculate the 

location of the marked region on the scanned image. In 

principle the marked region can be found by using the pixel 

distances measured on any single reliable match as they all 

indicate the location of the marked area. 

 

Figure 3 shows the reference image, on the left, and the 
scanned image, on the right, as the c-arm moves downwards 

and performs an online search. In this case, the number of 

corresponding reliable points is 2. The yellow line indicates 

the position of the c-arm and the green line indicates the 

camera’s viewpoint, which is also the last row that has been 

stitched. A closer look at the scanned image is needed to see 

where the estimated location of the marked region is. Figure 4 

shows the same scanned image from figure 3 with the addition 

of the red box which indicates the estimated location of the 

marked region. 
 

 
 

Figure 3: Result of online search after finding two corresponding reliable 

points. The yellow and green lines indicate the position of the c-arm and the 

camera’s viewpoint respectively. 
 

 
 

Figure 4: Result of online search indicating the location of the marked region 

on scanned image. The yellow and green lines indicate the position of the c-

arm and the camera’s viewpoint respectively. The red box is the estimated 

location of the marked region. 

IV. EXPERIMENTS AND RESULTS 

This section provides a detailed analysis of the experiments 

performed on the datasets acquired for this paper.  

A. Ground Truth 

A measure of accuracy needs to be defined for the 

estimated location of the region of interest on the scanned 

image. A maximum error of 2% of the SID is allowed in order 

for the proposed modification of attaching a camera onto the 

c-arm to be accepted for the Versascan. The ground truth is 

only used as a measure of accuracy to see how well the search 

method performs.  

 

Visual inspection can be used to see whether the estimated 
marked area has captured the required body region, but this 

doesn’t provide a quantified accuracy measure. Therefore, 

once the second video has been captured, another search is 

performed. However, in this case instead of doing a 

progressive search, all of the reliable points on the reference 

image are used. The region found using all the reliable points, 

referred to as the ground truth, is then compared against the 

estimated marked area for an accuracy measure. The ground 

truth is assumed to be the closest location to the original 

marked region. In addition to the ground truth, a visual test is 



also made to determine whether the correct marked region is 

found on the scanned image. The distance between the ground 

truth and the estimated region is the distance error used to 

determine accuracy in pixels. 
 

Using the previous example where figure 4 shows the 

estimated location of the marked region on the scanned image, 

the ground truth is determined and shown in figure 5. Figure 5 

shows the entire scanned image where the red and green boxes 

represent the estimated locations of the marked region and the 

ground truth respectively.  

 

Using figure 5 as an example, the error is found to be 7 pixels 
horizontally and 4 pixels vertically which is equivalent to 

17.92mm and 10.24mm. Therefore, the example illustrates a 

successful test as it resulted in locating the region of interest 

correctly within 2% accuracy. The results of each test in the 

experiment are analyzed using the ground truth to determine 

whether the correct region has been found and to what 

accuracy it is. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Entire scanned image with an estimated location of the region of 

interest and ground truth indicated by red and green respectively. 

B. Thresholds 

Various thresholds were mentioned in the workflow processes, 

all of which influence the results in some way. An evaluation 

is made on the different thresholds and a range of optimum 

values is identified that give a suitable result. The three 

thresholds evaluated are the number of reliable points found 

on the scanned image, the correlation coefficient value when 

searching for the reliable points, and the reliability measure of 

the feature points used.  

 

The experiment consists of two hundred and sixty tests where 

different regions of the body were marked and searched for. 
The results in this section have been captured by repeating the 

experiment and changing the various thresholds accordingly. 

For experimental purposes, tests which have achieved an error 

within 2%, 3% and 5% are recorded as passed tests as the 

marked area identified on the scanned image contains the body 

region. 

Each threshold is varied and a recommendation is made based 

on two results, the percentage of tests passed and the 

percentage of those passed tests that are within 2% and 3% 

error. The outcome of combining the two results is a 

percentage of tests passed within a certain accuracy. 

Therefore, a recommendation is made for each threshold based 
on the combination of the two results. For all the accuracy 

illustrations, the red and blue points show passed tests within 

2% and 3% accuracy respectively. 

 

The number of matches required is an important parameter in 

the matching process. If this parameter is set to be one, the 

estimated location of the region of interest would be obtained 

from the relative position of a match of one point. This makes 

the process of finding the estimated region fast but potentially 

inaccurate. On the other hand, if the parameter is set too high 

then the estimated region might not be found because the 

number of matches required within the marked region might 
never be obtained  

 

Therefore, the varying number of matches required used for 

the experiment are 2, 5, 10, 20 and 50. This particular 

experiment used the search and point reliability threshold of 

0.9 and 10 respectively. It is found that the greater the number 

of matches required, the more tests that fail. Figure 6a shows 

the results of the range of the number of required matches 

considered. The results suggest that one should use a low 

number of matches for the search. However, figure 6d shows 

an increase in obtaining more accurate results as the number 
of required matches increases to approximately 20. The 

product of combining the two results are, in order: 0.225, 

0.273, 0.168, 0.092 and 0.004. Therefore a recommendation is 

made to set the number of matches required to 5 to cater for 

both correct and accurate results.  

 

The correlation coefficient values from the search must be 

greater than the search threshold for a match to be declared. 

The highest correlation coefficient value around the search 

window is then used as the best match location to where the 

matching point is. The search threshold is therefore an 

indication of how good a match has to be for it to be 
considered reliable. The thresholds used for this experiment 

are 0.8, 0.85, 0.9, 0.95 and 0.98. This experiment used a 

required number of matches and a point reliability threshold of 

5 and 10 respectively.  

 

Figure 6b shows the results of the experiment where an 

increase in the search threshold results in a decrease in the 

percentage of tests passed. The accuracy of the tests passed is 

not drastically affected by the varying search threshold, as 

shown in figure 6e. The product of combining both results are, 

in order: 0.257, 0.271, 0.273, 0.210 and 0.136. Therefore, a 
recommendation is made to use a search threshold of 0.9 to 

cater for both correct and accurate results.  

 

A test is performed on each feature point individually to 

specify whether it is reliable or ambiguous. This test uses 



template matching of size 15 × 15 and a search window of 

size 75 × 75 with each feature point as its centre, to determine 

whether there is a similar point nearby. Normalized cross 

correlation is used as the template matches around the search 

window. 
 

All the correlation coefficient values are evaluated and 

accumulated as a weighting to how reliable the point is. If the 

correlation coefficient is 1, this is generally the case where the 

template is in its original position and therefore ignored. If the 

correlation coefficient is greater than 0.95, it is assumed that 

there is a similar template in the search window and 5 is added 

to the accumulated weighting. If it is greater than 0.9, then 

only 1 is added as it is not strongly similar. If the highest 

correlation coefficient value in the search window is less than 
0.9, it is assumed that there are no points similar and ignored. 

  

The accumulated weighting value is then compared to the 

point reliability threshold. If the weighting is smaller than the 

point reliability threshold then it is identified as a reliable 

point. If the weighting is greater than the point reliability 

threshold it is identified as an ambiguous point and is ignored 

when performing a search for the marked region. In the 

experiment, the point reliability threshold values considered 

are 10, 20 and 50.  

 
To see the effects of the point reliability threshold in the 

experiment, the required number of matches and search 

threshold has been set to 5 and 0.9 respectively. It is shown in 

figure 6c that a higher point reliability threshold results in an 

increase towards the percentage of tests passed. However, 

reliable points achieve better accuracy than non-reliable 

points, as shown in figure 6f. The product of combining the 

two results are, in order: 0.290, 0.250 and 0.226. Therefore, a 

recommendation is made to use a point reliability threshold of 

10 to cater for both correct and accurate results. 

 

     
 

 (a) (b) (c) 
 

     
 

 (d) (e) (f) 
 

Figure 6: Results of experiment varying various thresholds. (a), (b) and (c) 

shows tests passed with varying various thresholds. (d), (e) and (f) show the 

corresponding tests passed within 2% and 3% accuracy. 

C. Performance of Different Body Regions 

An evaluation is performed on each body region individually 

to see if some regions are found more easily than others. 

Recommended values for the different thresholds, mentioned 

previously, are used in determining the performance of 

different body regions.  

 

An analysis is performed on each body region to see whether 

some regions perform better than others. Figure 7 shows the 
percentage of tests passed for each region.  
 

 
 

Figure 7: Results of tests passed for each body region. 
 

The poorer performing regions, the abdomen, head and ribs, 

have been excluded to observe how it affects the overall 

performance. Figure 8 shows the performance using all the 

body regions and the other excluding the poorer performing 
regions. The blue, red and green indicates the tests passed and 

accuracies within 2% and 3% respectively. Removing the 

poorer performing regions results in an increase in the number 

of tests passed without having an impact on accuracy. This 

shows that certain regions of the body are easier to locate than 

others using the proposed online search. 
 

 

Figure 8: Results of the experiment using all and only specific regions. 

V. CONCLUSIONS AND FUTURE WORK 

The most significant result is that it is possible to automate 

the search for a region of interest on a real-time medical 

scanner. After performing an experiment consisting of 260 

tests, it has been found that it is possible to locate a region on 

the body, marked by the radiographer, with the aid of a camera 

attached to a c-arm. 

 



The main factors that influence the search were the thresholds 

placed on the number of matches required, the search 

threshold, and the reliability of the feature points. An 

evaluation on the various thresholds, which consisted of 

varying the threshold values, was performed in order to see the 

impact on the results and a recommended value was provided 
for each threshold. Taking the recommended threshold values 

into consideration, the results are found to have an overall 

performance of 57% of which 48% and 72% were within 2% 

and 3% accuracy.  

 

It was also found that certain regions of the body were easier 

to locate than others. When ignoring the regions that were 

harder to locate, the abdomen, chest and head, the overall 

performance had increased to 67% of which 49% and 73% 

were within 2% and 3% accuracy respectively. This shows 

that certain regions of the body are easier to locate than others. 

  
Actual data could not be acquired as the Lodox Versascan is 

still under development. This was overcome by mimicking the 

Versascan environment as closely as possible and obtaining 

datasets accordingly. Once the Versascan is operational, it 

would be of interest to acquire datasets from the actual device 

and compare them to the results found in this paper. As this 

experiment has shown, the method used to perform an online 

search to locate the region of interest is moderately successful. 
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