
Augmenting the L1 Tracker with appearance-based
tracking improvements

Charles Bradshaw
Department of Image Processing

University of Cape Town
Cape Town, South Africa

Email: brdcha003@myuct.ac.za

Fred Nicolls
Department of Image Processing

University of Cape Town
Cape Town, South Africa

Email: fred.nicolls@uct.ac.za

Gerhard de Jager
Department of Image Processing

University of Cape Town
Cape Town, South Africa

Email: Gerhard.DeJager@uct.ac.za

Abstract—The L1 Tracker is an existing algorithm for adap-
tive tracking by detection which uses a particle filter and tracks
by attempting to express proposed matches as sparse linear sums
of known templates. The sparse representation of the object
gives information of the current appearance of the target which,
for certain objects where appearance is linked to anticipated
motion, can help performance on subsequent frames. Currently
the L1 Tracker neither collects nor uses this information. The
L1 Tracker also only maintains 10 templates, and has a naı̈ve
approach to updating the list when a new template is added.
This paper describes the application of the L1 tracker on a
particular sequence where the object motion is strongly linked to
appearance, and the adjustments made to improve performance.
The adjustments include: 1) learning the motion associated with
each template, and using it in the particle propagation; 2)
improved template selection for the 10 templates used for each
frame; 3) using backtracking to improve performance when
the object disappears and reappears and 4) including negative
templates to create a discriminative tracker.

I. INTRODUCTION

Visual object tracking is a common task in image pro-
cessing. The objective is to follow a certain target through
a series of frames. This has many applications, such as
surveillance, human-computer-interfacing, visual servoing and
traffic monitoring. Sometimes the target is known in advance,
and an a-priori model can be built describing it. Often there
is no a-priori knowledge, and all that is available is an initial
frame annotated with the location of the object.

An approach that has achieved good results recently is
tracking by detection. In tracking by detection, the tracker
only models the 2-D appearances of the targets, discarding
any concept of a 3-D object in a 3-D world. One algorithm
that uses this approach is the L1 Tracker.

The L1 Tracker uses a particle filter to model the probabil-
ity density function (PDF) of the target location. It evaluates
each particle by attempting to express it as a linear sum of
templates. The better a particle is modelled by the templates,
the more likely the state is to represent the target. Ignoring the
obvious problems with taking weighted sums of different views
of the target, this approach has shown some success. However,
the implementation produced by the authors only maintains 10
templates. Every time a new template is recorded, an old one
needs to be removed. This is potentially useful information
that is being discarded. There is also useful information from
motion observed for each template that is discarded. The

authors’ implementation also does not handle the target leaving
the scene. The L1 tracker also does not model the background;
modelling the background is an effective strategy. We address
these issues and demonstrate improved tracking performance,
specifically on a sequence where object appearance is strongly
linked to object motion in the frame.

The rest of this paper proceeds as follows: in Section II we
review the relevant literature. In Section III we discuss the L1
tracker in depth. In Section IV we motivate and explain our
improvements. In Section V we describe our experiments and
present our results, and in Section VI we make conclusions.

II. RELATED LITERATURE

Tracking-by-detection trackers can be grouped into gener-
ative trackers and discriminative trackers. In this section we
will briefly discuss several trackers in each group.

A. Generative Trackers

A generative tracker builds a model of the target’s appear-
ance and then tries to find the location in each frame that is
most similar to the model. Examples include the fragments-
based tracker [1], visual tracking decomposition [4], and the
L1 tracker [5].

The fragments-based tracker [1] takes the initial target
image and divides it into several sub-patches, or fragments. It
then takes pixel intensity histograms of these fragments. The
object model is the combination of each fragment’s position
relative to the target frame, and the histogram expected for
that fragment. When a new frame is presented, each fragment
compares its expected histogram to the observed histogram
at each possible location, and votes for appropriate target
locations. All the fragments’ votes are aggregated and the
tracker outputs the best combined target location. The visual
tracking decomposition tracker [4] separates the model into a
observation model and a motion model. It then builds multiple
trackers with varying object and motion models. It runs these
multiple trackers in parallel, allowing them to influence each
other. The L1 tracker will be discussed in more detail in the
next section.

B. Discriminative Trackers

Discriminative trackers model the foreground and the back-
ground, and then classify patches of each presented frame

into these classes. The patch that the tracker has the most
confidence in is classified as foreground, and is selected
as the output. Examples of discriminative trackers include
the multiple instance learning tracker [3] and the ensemble
tracker [2].

The multiple instance learning tracker [3] draws a selection
of patches from each frame. Those far from the tracking result
are labelled negative, while those near the tracker result are all
put into a bag marked positive. The model assumes one of the
patches in each positive bag is the target but does not decide
which. This reduces model drift. The ensemble classifier [2]
uses an ensemble of weak classifiers to build a strong classifier
that discriminates foreground pixels versus background pixels.

III. THE L1 TRACKER

This section describes the L1 tracker [5] as obtained
from www.dabi.temple.edu/∼hbling/code data.htm. First the
tracking algorithm is explained, then we discuss aspects of the
algorithm and implementation that are relevant to the changes
we have made to the tracker.

A. Overview of algorithm

The L1 tracker uses a particle filter framework to model the
PDF of a Bayesian posterior probability: p(xt|y1:t) where xt is
the state at frame t as represented by an affine transformation,
and y1:t are the observations from frames 1 to t represented as
raw pixel values for the resized image patches. At each time
instant t a prediction is made:

p(xt|y1:t−1) =

∫
p(xt−1|y1:t−1)× p(xt|xt−1). (1)

Here the first factor is the Bayesian prior and the second is
the motion model. The prediction is calculated as an equally-
weighted discretised set of states st by transforming St−1

(the previous frame’s discretised posterior probability, used
as the current frame’s prior probability) randomly according
to a zero-mean Gaussian distribution. The assumption is that
because states far from St−1 are unlikely to be drawn from
the distribution they will be poorly represented in st. This is
evidently equivalent to a low p(xt|y1:t−1), and as such the
weights are not stored (st is assumed to be equally weighted).

Next the algorithm crops the image patch associated with
each of the proposed states, and calculates an observation
model p(yt|xt). It attempts to express each patch as a linear
sum of the 10 stored templates. The better the match is, the
higher the observation probability will be. It does this by
augmenting the 10 templates with a set of trivial templates,
where the nth trivial template is non-zero only at pixel n.
Any noise in the image can therefore be explained by adding
weight to the corresponding trivial template. The tracker then
expresses each particle as a sparse sum of the templates and the
trivial templates through L1-minimisation using an accelerated
proximal gradient descent.

The updated posterior probability is

p(xt|y1:t) =
p(yt|xt)× p(xt|y1:t−1)

p(yt|y1:t−1)
. (2)

The denominator is independent of the state, and since we are
only interested in maximising this posterior as a function of

state, we ignore it. The state with the maximum posterior is
output as the tracker result for that frame. If the image patch
associated with this state passes certain criteria, it is added to
the set of 10 templates, and the template that contributed the
least to the current frame is deleted. Finally st is resampled
according to Eq. 2, the updated posterior, to form a set of
equally-weighted states St for use in the next frame.

For its initial template set, the L1 tracker crops 10 near-
identical subimages from the initial frame.

B. Comments

Modelling the motion (i.e. the prediction probability) im-
plicitly through particle density (but with each particle having
the same weight) is counterintuitive. It means that in the
optimisation stage a particle that was far away from the mean
of the Gaussian (i.e. the motion model predicts that it is
possible but very unlikely) will outperform one that is near
the mean (i.e. likely) but with a slightly lower observation
model value. This is undesirable, especially considering the
small computational effort required to update the weights to
include the motion model value explicitly.

The L1 paper [5] refers to a state transition model (in
Section 3.1), where the prediction step takes the target velocity
into account. There was little evidence of this in the code.
This is pertinent because our motion model is based on object
appearance, not on recent object movement.

IV. PROPOSED IMPROVEMENTS

In this section we describe and justify our improvements on
the L1 tracker. Our improvements fall into 4 main categories:
1) particle guiding, 2) template selection, 3) backtracking and
4) negative templates. Particle guiding and template selection
both stem from our observation that the appearance of the
target in a frame carries information that is useful in tracking
during subsequent frames. As such we add a 7th state vari-
able to each particle: the template most used in its sparse
representation. We call the space described by the first 6
state variables (i.e. those describing the affine transformation)
the state space, and the space described by the 7th state
variable the template space. In particle guiding we look at
how the template-space state variable can be used to help
guide the particles in state space. In template selection we
guide the particles through template space, by controlling the
10 templates in the template set used for sparse representation.
In backtracking, we address issues relating to the target leaving
the frame and returning. In negative templates, we adapt the
L1 tracker to be a discriminative tracker.

We now address each of the improvement categories in
detail.

A. Particle Guiding

At the end of a pair of consecutive successfully tracked
frames, the following information is available:

1) The template that best described the first frame: the
template that contributed the most in the weighted sum used
to match the image patch.

2) The motion between the two states: the difference in
state-space between the two outputs.

This is useful information. We can learn what state-space
motion to expect for each template, and cluster the particles
more densely in that location in state space. This will mean that
the search resolution is usually highest where it is most needed.
We can do this prediction in a particle-by-particle manner: each
particle moves according to its template-space state variable.
This is in line with the particle filter being able to handle
multi-modal data.

In testing we found that having the tracker learn all 6
affine states’ transitions led to dramatic changes in aspect ratio,
and so we set the tracker to learn only the 2 state transitions
corresponding to translation.

It is useful to note that this motion prediction is based on
appearance and hence is independent to the usual velocity-
based movement model.

B. Template Selection

The L1 tracker maintains a small pool of 10 templates.
When a tracked result meets the criteria for inclusion into
the set of templates, one of the old templates needs to be
discarded. The original L1 tracker discards the template which
contributed the least to the current frame. We propose that
a better approach would be to discard the template with the
least unique information. The L1 tracker already calculates the
inter-template correlation for use in the accelerated proximal
descent, so at no extra computational cost we can discard
the template with the highest mean correlation to the other
templates.

It is also intuitive that discarding information should detract
from performance. If there is enough processing power and
memory, then keeping a larger pool of templates from which
to select 10 for each frame should improve performance. In a
similar manner to which we plan to learn what state space
movement is associated with each template, we will learn
which templates tend to follow each other. In this way we
model the template space to describe the distance between each
pair of templates. On each tracking frame, the new set of 10
templates is selected by considering which templates are highly
represented among the particles. Each template m contributes
the n closest templates to itself, where n is the the floor of
10 times the fraction of particles whose template-space state
variable is m. The remaining templates (whose space has been
created by the floor operation) are selected randomly from the
large set of templates.

C. Backtracking

Our third modification is to improve the tracker’s handling
of the target leaving the scene. The original code did not
provide any mechanism for handling this. We implemented a
simple threshold: if the winning particle’s sparse representation
has a combined weight for the trivial templates above a
predefined threshold, then the frame is considered empty. On
an empty frame, no track result is returned and all templates
are free to continue propagating (i.e. St = st).

We found that, while the target was out of frame, the tracker
could get caught on background objects and ignore the target

when it reappeared. To address this, when we rediscover the
target (i.e. a match after an empty frame), we make a recursive
call to our algorithm, backwards in time, initialised on the
rediscovered target, until the last tracked frame (we did not set
a maximum number of frames for this recursive call, although
in practice this would not be feasible). This backtrack can have
three possible outcomes:

1) Backtrack loses track before last known frame: in this
case it appears that the target left and returned. The backtrack
is successful. Allow it as a positive track.

2) Backtrack tracks to the last known frame, but final frame
does not overlap with the target in the last known frame: in
this case we have found a background object. The backtrack
was unsuccessful. Do not allow this to be a positive track. If
the tracker was a discriminative tracker, this would be included
as a negative template.

3) Backtrack tracks to last frame, and final frame does
overlap with the target in the last known frame: in this case
we have experienced several frames of false negatives. The
backtrack was successful. Allow it as a positive track. As an
aside, these could be a good positive templates. We did not
use these to update the template set.

By backtracking whenever we rediscover the target and
reacting appropriately, we should be able to reduce false
positives during empty frames.

In practice we found that the particle filter’s multi-modal
PDF description could lead to problems. We observed cases
where the tracker correctly rejected background objects via
backtracking. However, when the object returned and was
correctly identified, the particles still near the background
object managed to overpower the target several frames later.
The backtracker was not triggered, as the previous frame was
not empty. In response to this we culled the particles on target
rediscovery, setting them all to the track result. This zeros the
PDF everywhere other than at the target location.

D. Negative Templates

Due to repeated problems of background objects being
being awarded high observation model values, we decided
to implement a discriminative version of the L1 tracker. We
trained a negative tracker with negative templates, cropped
from around the target in the first frame. Whenever good
candidates were found for negative templates (e.g. after an
unsuccessful backtrack) they replaced the negative template
with the least unique informations.

During tracking, if the winning particle was better de-
scribed by the negative templates than the positive templates,
it was discarded.

V. RESULTS

In this section we describe the testing procedure. Then
we look at the effect of our different improvements. Because
our improvements affect each other’s performance, and there
are too many permutations to look meaningfully at them all,
we look at the each adjustment’s effect on the final tracker.
For each adjustment tested, we first describe the trackers,
then we present qualitative evidence that the adjustments are

Fig. 1. Composite made up of image regions from selected frames of the jet
ski sequence

improving results. Finally, we present quantitative results for
all the trackers tested.

A. Testing Procedure

We tested the trackers on a jetski sequence consisting
of 1154 frames. In the sequence a jetski zigzags its way
towards the camera, in a dock environment, leaving the scene
several times. Figure 1 shows an overview of the jetski’s
motion throughout the sequence. As ground truth we used
a successful track result verified by a human. This leads to
a slight inaccuracy of results, but since most tracking failures
consisted of latching onto background objects, we felt this was
a reasonable approach. We assigned each frame a label (True
Positive, True Negative, False Positive, Missed Positive, False
Negative), where a True Positive had a bounding-box overlap
with the ground truth of at least 50%. We then used the well-
known F-score to quantify the tracker’s performance:

F -score =
2PR

P +R
(3)

where

P =
True Positives

True Positives + False Positives + Missed Positives
(4)

R =
True Positives

True Positives + False Negatives + Missed Positives
.

(5)

Because the L1 tracker is a probabilistic algorithm we
averaged over 50 test results.

B. Tracker performance

1) Initial Tracker: As a baseline, we ran the L1 tracker
with no improvements on the sequence. this tracked well until
the target’s first disappearance. Because the tracker had no
mechanism for handling object disappearance, it continued to
track background objects, and did not latch onto the target
when it reappeared. Figure 2a shows the tracker succeeding
while the object is in frame, Figure 2b shows the tracker failing
when the target disappears, and Figure 2c shows the tracker
failing to rediscover the target on reappearance.

Figure 3 shows the progress of the tests through the
sequence, with each column representing a frame. If the target

Fig. 3. L1 Tracker test state versus time showing the fraction of tests in each
state for each frame

is in frame during that time instance, the column will be part
red, part light blue and part green. The red part represents
the fraction of tests in which the tracker correctly identified
the target for the frame (i.e. a true positive). The light blue
part represents tests in which the tracker’s output was not
deemed correct for the frame (i.e. a missed positive). The
green represents tests in which the tracker falsely identified
the frame as empty (i.e. a false negative). Periods for which
the target was out of frame are part orange, part dark blue.
The orange corresponds to tests where the tracker correctly
identified the frame as empty (i.e. a true negative). The dark
blue corresponds to tests where the tracker gave an output for
an empty frame (i.e. a false positive). As can be seen, the
tracker performed well up to the first disappearance (i.e. the
first block of red,light blue and green is mostly red). In no
test cases did the tracker identify that the object had left the
scene, and when it returned very few tests rediscovered it (i.e.
the rest of the plot is either light or dark blue, depending on
whether the target was in frame or not).

2) Final Tracker adjusting Particle Guiding: To test the
effectiveness of particle guiding, we enabled the full template
selection (i.e. maintaining a large pool of templates and
selecting the 10 most useful for each time instance), full
backtracking (i.e. backtrack on target rediscovery, and zero
the PDF on target location after a successful rediscovery)
and negative templates. We then tested three cases of particle
guiding: no guiding; full particle guiding (i.e. all 6 state-space
variables are guided), and modified guiding (i.e. only the two
state-space variables corresponding to translation are guided).

Figure 4 shows a sample frame that characterises the differ-
ences in tracking for the different particle guiding variations. In
Figure 4c, we see the modified guiding tracker’s result is in the
centre of the particle cloud, whereas in Figure 4a we see the no
guiding tracker’s result is on the leading edge of the cloud. This
is because the modified guiding tracker predicted the location
better, and was able to concentrate the particles so that the
greatest density of particles (i.e. a better search resolution)
was around the target’s location. It is pertinent to point out that
this prediction is made not on the target’s motion over previous
frames, but according to the appearance on the previous frame.
In Figure 4b we see that the full-guiding tracker’s response
is very different to the ground truth. The tracker was too
confident on the aspect ratio change during the turn. When the
target completed the turn, the particles continued their aspect
ratio change, which led to inferior tracking.

3) Final Tracker adjusting Template Selection: To test the
effectiveness of template selection, we enabled the modified
particle guiding (i.e. learning the two translation state vari-

(a) Frame 250 (b) Frame 470 (c) Frame 600

Fig. 2. The L1 tracker at frames 250 (2a), 470 (2b) and 600 (2c). The rectangles represent all the particles. Yellow rectangles represent particles that were in
st but did not survive into St. Green rectangles represent particles that survived to St. The red rectangle is the tracker’s output, and the blue rectangle is the
ground truth.

(a) No guiding (b) Full guiding (c) Modified guiding

Fig. 4. The final tracker adjusting particle guiding for frame 330 with no particle guiding (4a), full particle guiding (4b) and modified particle guiding (4c).
The rectangles represent all the particles. Yellow rectangles represent particles that were in st but did not survive into St. Green rectangles represent particles
that survived to St. The Red rectangle is the trackers output, and the blue rectangle is the ground truth.

ables for each template), the full backtracking and negative
templates. We then tested three cases of template selection:
naı̈ve template selection (i.e. when a template needs to be
discarded, the template which contributed the least to the
current frame will be discarded); improved template selection
(i.e. when a template needs to be discarded, the template which
contributes the least unique information will be discarded),
and full template selection (i.e. maintaining a large pool of
templates and selecting the 10 most useful for each time
instant).

Figure 5 shows the different performance per frame for the
three test cases. The occurrences of false negatives (as shown
by green sections) in the naı̈ve template selection tracker after
each reappearance are noticeably larger than in the improved
and full template selection tracker. It is evident that for each
frame the improved template selection tracker has more correct
test cases (as shown by more red or orange per column) than
the naı̈ve template selection tracker. The full template selection
tracker in turn outperforms the improved template selection
tracker in every frame.

4) Final Tracker adjusting Backtracking: To test the ef-
fectiveness of backtracking, we enabled the modified particle
guiding, full template selection, and negative templates. We

Fig. 5. Final tracker adjusting template selection test state versus time
showing the fraction of tests in each state for each frame (same colour scheme
as Figure 3). The results for a naı̈ve template selection ar shown in 5a, 5b
shows the results for the improved template selection and 5c shows the results
for the full template selection.

then tested three cases of backtracking: a simple threshold; a
threshold with backtracking (i.e. the PDF is not focused on
the target if backtracking is successful), and full backtracking
(if a backtrack is successful then the particles are all set to the

Fig. 6. Final tracker adjusting backtracking test state versus time showing the
fraction of tests in each state for each frame (same colour scheme as Figure 3).
The results for a simple threshold are shown in 6a, 6b shows the results for
a simple threshold with backtracking, and 6c shows results full backtracking
(i.e. with PDF zeroing after rediscovery of target).

Fig. 7. Final tracker adjusting negative templates test state versus time
showing the fraction of tests in each state for each frame (same colour scheme
as Figure 3). The results without negative templates are shown in 7a and 7b
shows the results with negative templates.

target location, zeroing the PDF elsewhere).

Figure 6 shows the different performance per frame for the
three test cases. The backtracking only takes effect on particle
rediscovery, so it is not surprising that the most noticeable
difference is a reduced gradient during the empty frames: fewer
true negatives become false positives (as shown by the orange
and dark blue rectangles, which have fewer orange pixels
becoming dark blue pixels).

5) Final Tracker adjusting negative templates: To test the
effectiveness of negative templates, we enabled the modified
particle guiding, full template selection, and full backtracking.
We then tested two cases: with negative templates, and without.

Figure 7 shows the different performance per frame for the
two test cases. It is evident that for most frames there were
more instances of correct tracking for the tracker with negative
templates.

TABLE I. AVERAGE F-SCORE ACROSS 50 TRIALS

Tracker F-score

L1 tracker 0.4860

Final tracker with no particle guiding 0.8205
Final tracker with full particle guiding 0.7165
Final tracker with modified particle guiding 0.8485

Final tracker with naı̈ve template selection 0.7178
Final tracker with improved template selection 0.8104
Final tracker with full template selection 0.8485

Final tracker with a simple threshold 0.6129
Final tracker with a threshold and simple backtracking 0.7717
Final tracker with full backtracking 0.8485

Final tracker with no negative templates 0.7597
Final tracker with negative templates 0.8485

Final tracker 0.8485

C. Summary of results

Table I shows the average F-score for all the trackers tested.
The results have been grouped according to the adjustment
being tested, with the last member of each group being the
final tracker. The L1’s performance is noticeably lower than
the other trackers tested. This is largely because it has no
mechanism for handling the target leaving the scene. The
particle guiding shows a small improvement for the modified
particle guiding, and a deterioration for full particle guiding,
whereas the improvements for template selection, backtracking
and negative templates are all substantial.

VI. CONCLUSION

In this paper we modified the L1 tracker to test the
effectiveness of 4 different strategies: 1) particle guiding, 2)
template selection, 3) backtracking and 4) negative templates.
The first two strategies were in response to our observation that
the target appearance is another state parameter to consider
while tracking. The third was to improve false positive rejec-
tion while the target was out of frame, and the fourth was to
convert the L1 tracker into a discriminative tracker. We tested
on a sequence where target appearance was strongly linked to
target motion and which included the target leaving the scene
and returning. We found that the particle guiding led to small
improvements, and the template selection, backtracking and
negative templates all led to large improvements on the L1
tracker.

ACKNOWLEDGMENTS

We thank the authors of the L1 Tracker [5], for releas-
ing their source code. We also thank the National Research
Foundation of South Africa for their funding of this project.

REFERENCES

[1] A. Adam, E. Rivlin and I. Shimshoni, “Robust Fragments-based Tracking
using the Integral Histogram”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’06), pp.798–805, 2006.

[2] S. Avidan, “Ensemble Tracking”, Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, vol. 2, pp. 494-501, 2005.

[3] B. Babenko, M. H. Yang, & S. Belongie, “Visual tracking with online
multiple instance learning”, IEEE conference on Computer Vision and
Pattern Recognition pp. 983–990, 2009.

[4] J. Kwon, K. M. Lee, “Visual tracking decomposition”, Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’10); pp. 1269-1276. 2010

[5] X. Mei, H. Ling, “Robust Visual Tracking and Vehicle Classification via
Sparse Representation”, IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 33(11):2259–2272, 2011.

