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Abstract

Jones [1] recently presented a novel calibration procedure
that uses a linearized model of the projection of the height of
a person to recover the image-plane to local-ground-plane
transformation with minimum expert intervention. In this
paper we present an addition to the work of Jones [1], by
further reducing the measurements needed to be made man-
ually to define the image-plane to ground-plane homogra-
phy. We also do an analysis of the sensitivity of the recov-
ered transformation to errors in measurements and noise,
and point out how to use the method to achieve best cali-
bration results.
Keywords: Auto camera calibration, person tracking

1 Introduction

A good camera model for image-plane to ground-plane
transformations is a useful thing to have when tracking peo-
ple or moving objects within monitored scenes. It allows
the tracking to take place in world coordinates rather than
in image coordinates and this has several advantages:

(i) motion models are easier to construct in world coor-
dinates;

(ii) constraints on motion are more easily imposed;

(iii) occlusions become easier to ressolve;

(iv) and the definition of a common coordinate system in
the case of multi-camera tracking configurations is
made simpler.

The camera model as described by Tsai [2] is based on the
pin hole model of perspective projection. This model is de-
fined by a set of intrinsic parameters and extrinsic parame-
ters.

Intrinsic parameters are the internal properties of the
camera that describe how the camera forms an image. Tsai

[2] includes the following internal parameters: focal length,
pixel dimensions, distortion coefficients and the pixel coor-
dinates of the optical center.

Extrinsic parameters describe the camera’s pose: orienta-
tion and position in the world coordinate frame. The exter-
nal parameters are simply the rotation angles and the trans-
lation components for the transformation between world
and camera coordinate frames.

Auto calibration methods aim to obtain those camera
parameters without the need for manual time-consuming,
labour intensive and skill-dependent procedures based on
variations of the Tsai method [2, 3].

The method proposed by Jones [1] to recover the im-
age to the local-ground-plane transformations uses a linear
model of the projected height of objects in the scene in con-
junction with world knowledge about the average person’s
height (assuming the person is standing) and the height of
the camera above the ground. The camera parameters that
are estimated using this method are the pixel width to focal
length ratio in the y-direction and the look-down angle of
the camera.

In section 2 we describe the camera model used by Jones.
We describe how the linearized height model relates to the
actual projected height model, and how it can be used to es-
timate the camera parameters. In section 3 we present our
improvement on Jones’ method, that allows a more robust
estimation of the camera pose and does not require the prior
knowledge of the camera’s height. In section 4 we investi-
gate the sensitivity of our method to noise and distortion and
explain the conditions that have to be met for the method to
be suitable for a given camera calibration problem.

2 The auto calibration method

2.1 The Camera Model

The camera model used in this paper is a slightly simplified
version of the one used by Tsai in that the optical center is
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assumed to be the center of the image and radial distortions
and other camera aberrations are not taken into considera-
tion.

Establishing camera to ground homography requires that
the ground plane coordinate system (GPCS) origin be cho-
sen relative to the camera position and orientation, which
defines the image plane coordinate system (IPCS). Figure 1
shows the relationship between the GPCS, the IPCS and the
image plane.
The GPCS has origin OG and is defined as follows:

• The Y-axis Ŷ, is the projection of the optical axis
along the ground plane.

• The X-axis X̂, is the vector within the ground plane
normal to the camera optical axis.

• The Z-axis Ẑ, is the normal to the ground plane.

The position of the focal point, OI is directly above the
GCPS origin OG at (0,0,L).

The IPCS has OI as origin and is defined as follows:

• The x-axis x̂ is parallel to X̂ a distance L away.

• The y-axis ŷ is perpendicular to the optical axis.

• The z-axis ẑ, coincides with the optical axis. It makes
an angle θ with Ẑ, called the look-down angle of the
camera.

A point x (x ,y,z) in the IPCS is mapped to X (X ,Y ,Z ) in the
GPCS by the transformation (R, t), where R is a rotation θ

about x̂ and t a translation, in this case [0, 0, L]T .
The image plane is parallel to the plane defined by x̂ and ŷ
and is located a distance f (focal length of optical system
for the camera) from it.

A point P on the image plane has coordinates: xP =
(x, y, − f ). The pixel coordinate system (PCS) lies in the
image plane and has its origin at the top left corner of the
image, shown by OP and is defined as follows:

• i is the column position of a pixel.

• j is the row position of a pixel.

• (i0, j0) is the optical center.

The PCS is related to the IPCS by: x = αx ( j − j0) and
y = αy(i − i0) where αx and αy are the horizontal and
vertical inter-pixel widths. Thus

xP = (α
f
x ( j0 − j), α f

y (i0 − i), −1) f (1)

where α
f
x = αx/ f and α

f
y = αy/ f .

FIGURE 1: The Camera, IPCS and GPCS

Let l be the optical ray containing O and P . l can be
described by: x = μxP where μ is a scaling factor. And let
P be the image of Q, an object on the ground plane. Q is
then the intersection of l with the ground plane.

To find Q in the GPCS, l must be mapped from the IPCS
to the GPCS. l is then described by:
X = μRxP + t. XQ , the GPCS coordinates of Q in terms
of i and j is found by solving:

⎡
⎣

X ′
Y ′
0

⎤
⎦ = μ′

⎡
⎢⎣

α
f
x ( j0 − j)

α
f
y (i0 − i) cos θ + sin θ

α
f
y (i0 − i) sin θ − cos θ

⎤
⎥⎦ +

⎡
⎣

0
0
L

⎤
⎦ (2)

[Note that the constant f in (1) is absorbed by μ′]. This
yields:

X ′ = Lα
f
x ( j − j0)

cos θ − α
f
y (i0 − i) sin θ

(3)

Y ′ = L(sin(θ + α
f
y (i0 − i) cos θ)

cos θ − α
f
y (i0 − i) sin θ

(4)

2.2 The height model

In this section we show how the projected height model can
be used to infer depth. The GPCS coordinate of a person’s
head is the point of intersection of l with the plane parallel
to the ground plane at a height (L − H) below the camera,
where H is the height of the person. Let the image coor-
dinates of the feet and head of the person be (i1, j1) and
(i2, j2) respectively. The image of the head appears h pix-
els ‘above’ that of the feet, so:

i2 = h + i1 (5)
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Let the ground-plane coordinates be (X ′
1, Y ′

1) and (X ′
2, Y ′

2).
Then using (4) we get:

Y ′
1 = L(sin(θ + α

f
y (i0 − i1) cos θ)

cos θ − α
f
y (i0 − i1) sin θ

(6)

Y ′
2 = (L − H)(sin(θ + α

f
y (i0 − i2) cos θ)

cos θ − α
f
y (i0 − i2) sin θ

(7)

Since the head is above the feet in the GPCS we can let

Y ′
1 = Y ′

2 (8)

and by substituting (5) in (8) and simplifying we get:

α
f
y h= cos θ sin θ(1−(α

f
y (i0−i1))2)+α

f
y (i0−i1)(cos2 θ−sin2 θ)

L/H+α
f
y (i0−i1) cos θ sin θ−cos2 θ

(9)

This gives us a projected height model that computes the
height in pixels of the image of a person at image coordinate
i1, given that we know his real height H , the height of the
camera above the ground L , the angle the camera makes
with the vertical θ , and the pixel width to focal length ratio
α

f
y .

2.3 The linearized height model

Jones [1] goes on from here to assume the above relation-
ship is linear, with some precautions about steep camera an-
gles. Figure 2 shows us that indeed the relationship deviates
more and more from linearity as θ is decreased. In section
4 we give a more quantitative analysis of the validity of this
linearization.
This linear relationship is expressed as follows:

h = γ (i − ih) (10)

where γ is called the height expansion rate and ih is the
pixel row coordinate of the horizon. By recording how h
varies with i over a number of frames, the values of γ and
ih can be recovered.

FIGURE 2: h vs i for different θ

2.4 Using the linear model to perform cali-
bration

For a person of height H standing on the ground plane at
point R (see figure 1), where the projection of the optical
axis intersects the ground plane, i1 = i0 and using (5), i2 =
h0.
Substituting in (9) simplifies to:

h0 = H cos θ sin θ

α
f
y (L − H cos2 θ)

(11)

h0 is also found using the linearized model (10):

h0 = γ (i0 − ih). (12)

The look-down angle θ is directly related to the horizon pa-
rameter ih by:

(i0 − ih) = cot θ

α
f
y

(13)

Substituting (i0 − ih) from (13) in (12), equating to (11) and
simplifying yields:

sin2 θ = γ (L − H)

H(1 − γ )
. (14)

Once a suitable number of (i ,h) measurements are recorded,
γ and ih can be obtained. θ can be then be calculated using
(14) given H and L . Once θ is known, α

f
y is calculated

using (13).

3 Estimating the camera height

What was observed when trying to estimate the height of the
camera for a set of observations of a person of known height
H , was that there are several possible solutions of θ and L
that fit the height model. In other words the problem is
somewhat underconstrained. To impose enough constraint
on the problem, one has to simply “watch” more than one
person. For each person of different height Hp, collect data
points and work out a different γp as shown in figure 3.
If one defines �p and ηp as:

�p = 1 − γp

γp
(15)

ηp = h0re f

Hre f · h0p
, (16)

where Href and h0re f is the known height in m and corre-
sponding height in pixels of one of the persons in the scene,
equation (14) can bere-written as:

� = L

sin2 θ
· η − 1

sin2 θ
(17)

By applying linear regression to the set η, � (see figure 4),
we can calculate θ and L .

9



FIGURE 3: Measurements of (i ,h) for 4 people of different
heights.

FIGURE 4: Calculated (η,�) for the 4 people.

4 Accuracy of method and sensitivity
analysis

A calibration method is only useful if it yields reasonably
accurate results. In this section we describe how to use our
method successfully and what results should be expected
given a calibration problem. We also make a few sugges-
tions about how to get around some of the limitations of the
method.

The camera parameters that the method estimates are θ ,
L , and α

f
y by observing how the height in pixels hcalib of

people of height Hp, vary with the vertical pixel position
icalib, where Hp = 1

ηp
.

4.1 Sensitivity of estimated θ to errors

θ is calculated from γ and Hp using (17) or (14). If you
look closely at the formulation for finding θ in (14) you will
notice that sin2 θ is quite sensitive to errors in γ . Figure 5
gives you a good idea of how sensitive it is to γ and Hp.
The calibration method uses a linearized height model and
as shown in the previous section, the actual height model
deviates from linearity as θ decreases. This induces an error
in ih that gets worse as θ decreases. Although this error

FIGURE 5: Sensitivity of θ to errors in γ and Hp

is small it is enough to affect θestimated significantly. We
found that it is simpler to compensate for the error directly
on θ than on ih . The compensation factor for θ was found
by comparing θestimated with θactual :

θactual = 0.65θestimated + 27(degrees) (18)

4.2 Sensitivity of estimated L to errors

L is also calculated from γ and Hp using (17). L is however
less sensitive to errors in γ as seen in figure 6.

FIGURE 6: Sensitivity of L to errors

4.3 Sensitivity of estimated α
f
y to errors

α
f
y is estimated from θ and ih using (13). ih would not

typically be part of the calibration set. It is estimated from
the linear model.

ih = i0 − h0

γ
(19)

Figure 7 shows how α
f
y varies with γ for different θ .
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FIGURE 7: Sensitivity of α
f
y to errors

4.4 γ , the linearized model paramter

As seen above, all the estimated calibration parameters are
calculated using γ , so it is very important that a good value
of γ is obtained. Errors in γ are induced by the following
factors:

(i) Not using a good calibration set.
The height model is linearized about i0, (actually γ =
dh
di |i=i0 ), so the mean(icalib) must be as close to i0 as
possible even if it means disguarding some calibration
points. This constraint on the calibration set can easily
be automated. Figure 8(a) shows how γ varies with
mean(icalib). Note that for smaller values of α

f
y , γ is

less sensitive to errors. Hence, the higher α
f
y (or the

lower the focal length), the more difficult it is to get
accurate results.

(ii) Lens Distortion effects.
Figure 8(b) shows how γ will be shifted from its cor-
rect value for different 1st order radial distortion co-
efficients κ . It should be quite clear that the method
will fail to give good results for cameras with high
distortion if no compensation is made. (A method for
estimating κ is currently being looked at.)

(iii) Segmentation errors.
The calibration set is obtained typically by using di-
mensions and positions of bounding boxes around
people-like moving blobs, which requires some form
or another of segmentation. Random segmentation er-
rors will be averaged out by using a large calibration
set. However, segmentation errors, such as shadows,
heads or feet ‘chopped off’, systematically occuring
in certain parts of the screen will bias γ . Care must be
taken that no such errors occur during the calibration
process.

(a)

(b)

FIGURE 8: Sensitivity of γ

4.5 Sensitivity for extrinsic parameters only

The limitations of the method are made quite clear above.
There are certain cases where the method just cannot practi-
cally be used to estimate both intrinsic and extrinsic param-
eters. However, the same linear model can be used, much
more reliably, to estimate automatically the extrinsic param-
eters θ and L if intrinsic parameters are obtained prior to the
installation of the camera.
With κ known, (icalib, hcalib) can be compensated for to
yield better γ . With α

f
y known, θ can be calculated from ih

using (13), and L using (14). Figure 9 show θ ’s sensitivity
with γ . It is very clear that θ is much less sensitive in this
case.

5 Results

In this section the method is evaluated. The test installa-
tions involve three different camera setups. As described in
section 2 the projected height model for each camera setup
is recovered by observing the variation of hcalib with icalib.
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FIGURE 9: Sensitivity of γ for extrinsic parameters only

FIGURE 10: Calibration results

Figure 10 shows comparisons of our methods and another
method based on the traditional Tsai [2] and ground truth
data. Those results show that for the first two setups, where
α

f
y is small our method performs relatively well for find-

ing both intrinsic and extrinsic parameters. However for the
third setup where α

f
y is greater, the method yields less ac-

curate results.

6 Conclusions

In this paper we have presented an automatic calibration
system for fixed camera person tracking applications. When
possible the method can automatically recover instrinsic pa-
rameter α

f
y and extrinsic parameters L and θ . We have also

presented an extensive study of how sensitive the estima-
tions are to errors, thus detailing some of the limitations of
the calibration method. The results that are included show
that provided conditions spelt out in section 4 are met, the
method will yield results comparable to the classical cali-
bration methods. Further work would entail the automatic
estimation of the distortion parameter κ and possibly α

f
x ,

which in this paper was assumed to be equal to α
f
y .

(a) (b)

(c) (d)

(e) (f)

FIGURE 11: Tracking in 3D using above results
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