Fast Implementation of the FRAME Algorithm
using a GPU Gibbs Sampler

Baruch Lubinsky
School of Electrical Engineering
University of Cape Town
Cape Town, South Africa
Email: baruchlubinsky @ gmail.com

Abstract—The FRAME (Filters, Random fields and Maximum
Entropy) algorithm for visual textures is presented. This paper
describes an approach to implementing the algorithm aimed at
decreasing its execution time. This is done by decreasing the
complexity of some of the operations and by running the most
time consuming component — the Gibbs sampler — on a GPU.
Specific details on how the Gibbs sampler is coded to run on the
GPU are given. The parallel implementation allows the Gibbs
sampler to run more quickly than on a serial processor thereby
reducing the time taken to run the FRAME algorithm. This
implementation is designed such that more complex problems
lead to more threads. The more threads that are run, the greater
the advantage over serial execution. Consequently the size and
complexity of the visual texture that is processed can be scaled
up with minimal increases to the execution time.

I. INTRODUCTION

Visual textures are images that are made up of patterns [1].
Texture information greatly enriches human perception. The
patterns that comprise a visual texture are not necessarily
strictly regular so it is difficult to model them mathematically.
There are many approaches to the problem of creating com-
puter models of visual textures. The work in this paper is based
around the FRAME algorithm of Zhu et al. [2].

The power of modern computers has made the computation
of many algorithms feasible that were previously considered
too complex to implement. One area that has gained a lot of
popularity due to this new computational power is Bayesian
inference [3]. The integration required to marginalise the
posterior can be of very high dimension, and theoretically
intractable [4]. Monte Carlo approximations can be used
to estimate the required integral in reasonable time. This
allows powerful statistical algorithms to be used in practical
applications.

This paper considers the use of massively parallel computer
architecture to implement a Gibbs sampler. The Gibbs sampler
is the innermost function of the FRAME algorithm. The
algorithm requires many iterations of a Gibbs sampler to be
executed and therefore benefits greatly, in terms of execution
speed, when it is optimised. The next section describes the
FRAME algorithm in broad terms and discusses the Gibbs
sampler. Section III gives the details of the GPU implemen-
tation followed by testing details and analysis in section IV.
Concluding remarks are given in section V.

Fred Nicolls
School of Electrical Engineering
University of Cape Town
Cape Town, South Africa
Email: fred.nicolls@uct.ac.za

II. BACKGROUND

Zhu et al. develop an algorithm for statistical modelling of
visual textures — Filters, Random fields and Maximum En-
tropy (FRAME) [2]. The algorithm simultaneously confronts
the two main problems associated with visual textures, namely
synthesis and classification, by building statistical models
of the texture [1]. The models produced by this algorithm
are attractive because the information they contain is easily
interpreted.

A. FRAME algorithm

An overview of the algorithm is discussed to place the Gibbs
sampler [5] in context. Figure 1 shows a basic flow diagram
of the steps in the algorithm. The full details of the FRAME
algorithm are too complex to present here, refer to the original
paper of Zhu et al. for a complete explanation [2].

Images of a certain visual texture are considered to be
instances drawn from a distribution f(I). All samples from
the distribution have a similar appearance. The goal of the
algorithm is to make inferences about f(I) based on the
observed samples. The texture is modelled by a set of filters
and the statistics related to the observation’s response to those
filters.

The algorithm is initialised with a data observation and a
filter bank of all the filters that may be used. The selection
of filters is very important as a texture with features that
cannot be detected by any of the filters in the bank will be
impossible to model. A variety of common linear filters are
used at different scales and rotations. The algorithm does not
require that the filters be linear but this limitation is assumed
as it allows for faster computation [6].

The observation is filtered by each filter in the bank and
histograms of the responses are calculated. The filter whose
response has a histogram with the maximum entropy is se-
lected. The entropy is calculated by,

S = —/H(I) log H(I)dI, (D)
so the histogram, H (I), with the most information is chosen.

The filter is removed from the filter bank and added to the
model.

Data
observation

Add filter to model

Update A

v

Gibbs sampler

Evaluate Sample

Evaluate model

Fig. 1. Basic flowchart of the FRAME algorithm

The model is defined by a set of filters and an array of
Lagrangian multipliers associated with each filter:

K
) > <A@ HO
_ a=1
p(0) = Z° @

for K filters. The Lagrangian multipliers A, which act like
weights to the histogram bins, are calculated numerically by
iterative gradient descent. At each iteration a sample is drawn
from p(I) and histograms are calculated for each filter in
the model. The differences between those histograms and
the histograms from the observation are used to push the
Lagrangian multipliers towards values which make p(I) better
represent the true distribution underlying the texture.

The algorithm alternates between steps of updating A and
drawing samples from p(I) until the values converge. Then
another filter is added from the filter bank. Subsequent filters
are selected based on the difference between the histograms

obtained from filtering the observation and from filtering the
latest sample of p(I). The filter with the largest sum of absolute
differences is chosen. So that at each step of the outer loop
the filter which contains the most new information about the
texture is added to the model.

Samples are drawn from the proposal distributions using a
Gibbs sampler [5]. It takes many iterations for the A\ values
to converge so this process must be carried out many times
in order to obtain a good model. Decreasing the time taken
to draw each sample greatly improves the performance of the
algorithm. The Gibbs sampler is also extremely parallelisable
in this application. It is for these reasons that that function is
implemented on a GPU.

B. Gibbs sampler

The Gibbs sampler is a Markov chain Monte Carlo al-
gorithm and a special case of the Metropolis-Hastings al-
gorithm [7]. It is used to produce samples from probability
distributions that are either unknown (but form part of a known
joint distribution) or too difficult to sample directly [8]. This
application is an example of the latter; the image space is of
very high dimension — equal to the number of pixels — so
it is impractical to sample the proposal distribution directly.

The algorithm creates a sequence of possible samples that
form a Markov chain; each sample depends only on the
previous one. It is initialised with a white noise image and
at each step, the colour of a single pixel is updated under
the current proposal distribution p(I). The probability of
the pixel’s intesity being each colour is calculated from the
distribution and a new colour is selected with likelihood in
proportion to those probabilities. After enough steps in the
chain the samples are being drawn from the target distribution.
However, knowing the exact number of steps required before
the Markov chain has converged is not straightforward [9].

The chain can take many iterations to converge making the
Gibbs sampler very computationally expensive. The compu-
tational complexity can be reduced by a factor linear to the
number of threads available by updating multiple components
at once. Doing so does not violate any of the theoretical basis
of the algorithm as each sample still depends only on the
previous one, so the Markov property of the chain is preserved.
As the dimensionality of the sample can easily be in the
thousands, it makes sense to use a graphics programming
unit (GPU) capable of running large numbers of threads
simultaneously.

III. IMPLEMENTATION DETAILS

When the FRAME algorithm is executed, the Gibbs sampler
is required to produce a sample of the proposal distribution
each time the A values are adjusted. It takes hundreds of
iterations for those values to converge. The number of pixels
to be updated at each step is chosen to be four times the total
number of pixels in the image, following the original work
of Zhu et al. [2]. For each of these pixels, the Gibbs sampler
requires a probability of the pixel being each colour. That
probability depends on the histogram produced by each of the

filters in the current model. For a simple case of a 32x32
pixel image with eight colours and three filters that equates
to producing ten thousand histograms per iteration. This is
extremely inefficient so a number of measures are taken to
optimise the process.

All the filters in the filter bank are linear and smaller than
the entire image. Consequently changing the colour of a single
pixel affects a small region of the filter response and this
change can be calculated by a single addition [6]. The change
to the filter response when adjusting the intensity of a pixel
is simply the response plus the impulse response of the filter
scaled by the change in intensity. If the intensity pixel p is
changed from Cj to C the filter response F becomes:

Foyi=F,+ (Cl — Co)Kp 3)

where K, is the filter kernel centred on p. This calculation is
far simpler than computing the filter response each time and
only requires the convolution be computed once per filter.

Extracting a histogram from the filter response is also an
expensive operation. This can be obviated in a similar way.
The histograms of all the responses for the current sample are
stored. As the pixels are flipped to create new samples a count
is kept of the changes to each bin in the histogram. For each
element of the response that changes its value, 1 is added to
the bin containing the value and subtracted from the bin that
previously contained it.

This is the operation that is run on the GPU. The pixels
to be considered are passed to the GPU code and it returns
the changes in histogram bin counts for each colour for each
filter. The data required by the GPU are the current sample;
the filters in the model; the current sample’s responses to
each filter; the histograms of those responses; and the set
of colours (or intensities) that may be used. One thread is
created for each set of pixel, colour and filter. Each thread
is required to perform the addition of the filter kernel and
to count the changes to the histogram. It is a very simple
computational task, requiring very few instructions to execute.
There is an inefficiency caused by the fact that all the threads
must wait for the thread handling the largest filter to complete.
However, none of the filters is very large so this is not a serious
bottleneck.

A. Hardware considerations

The GPU hardware used is a NVIDIA GeForce GTX
470 [10]. Programming for a GPU is sensitive to the specific
details of the hardware. Some specifications of the card are
given in Table 1.

These are significant because in order to get the best
performance the program must run within the constraints of
the hardware while using as much of the power available in
each streaming multiprocessor (SM) as possible.

B. GPU program

The GPU code is written in CUDA C [10]. In this platform
threads are grouped into blocks with each block containing
an array of threads. The fastest type of memory to use is the

TABLE I
GTX 470 SPECIFICATIONS

CUDA cores per SM 32
Maximum threads per SM 1536
Maximum threads per block 1024
32-bit registers per SM 32K
Global memory 1280 MB
Shared memory 48 KB
Constant memory 64 KB

registers but the space available is limited. Threads from the
same block have access to the same block of “shared memory”.
Shared memory is similar to cache memory on a CPU; it is
much faster than the global memory and it has much higher
bandwidth to the SM. In addition there is a region of memory
called “constant memory” which is available globally, to all
threads. Access to data stored in constant memory is cached
to increase efficiency.

To initialise the GPU code the filters, current sample and
its responses are copied from CPU memory to the GPU. The
filters are placed in constant memory as they are to be accessed
the most often. If the maximum size of a filter is 32x32
and the values are single precision floating point numbers,
the amount of constant memory available limits the maximum
number of filters to 16. This is an acceptable restriction as most
textures can be well modelled using less than ten filters. The
current sample and responses cannot fit in constant memory,
although they are constant in the scope of the GPU. There is
still a performance gain by storing them globally as it reduces
the amount of data that needs to be transferred.

A thread block is created for each pixel under considera-
tion. The thread block contains a two dimensional array of
threads — one for each combination of filter and colour. The
parameters to the thread are the pixel’s coordinates, the set
of colours and the borders of the histogram bins. Each thread
in the block computes the histogram changes. These can be
stored in registers as only one integer is required per histogram
bin. Once a thread completes, it waits for all the threads in its
block and then the histogram changes are combined into one
array to be returned to the CPU.

The probabilities of the colours are calculated on the CPU
from the histograms. The CPU updates the sample accordingly
and changes the responses for the next iteration. These com-
putations are not trivial; they contribute significantly to the
overall running time of the algorithm.

IV. RESULTS AND ANALYSIS

The effectiveness of the algorithm is confirmed by viewing
a sample image that is produced after the Markov chain has
converged. That image should have a similar appearance to the
observation. Examples of textures synthesised by the algorithm
are shown in Figure 2.

These images are produced by running FRAME with the
image in Figure 2(a) as the data observation. The colour palette
available to the sampler contains 4 intensities. The algorithm
is run for 1000 iterations per filter. The images shown are

(a) Observation

S n]

(c) Sample with 2 filters (d) Sample with 5 filters

Fig. 2. Example of a textures synthesised by the FRAME algorithm

the samples that were drawn having histograms most closely
matching those of the observation. Figures 2(b), 2(c) and
2(d) are sampled from models containing 1, 2 and 5 filters
respectively. In each case there are artefacts of the initial white
noise image remaining. It can be seen that for each filter added
to the model the sampled images have more structure to them.

A. Execution time

The FRAME algorithm is computationally intensive. In
order for it to be useful we must be able to run it in reasonable
time. An experiment is conducted to assess the execution speed
under different parameters. This is done to test the efficacy
of the GPU code and to find the conditions under which the
hardware is best utilised.

A small texture patch of 32x32 pixels is used in the tests,
at this size a texture can be discerned and the algorithm
runs relatively quickly. The image is shown in Figure 2(a).
FRAME is run using that image as the observation with a
colour palette of 2, 4 and 8 grey levels. The algorithm runs
until the model contains 5 filters and 50 iterations are run on
each filter. This is a long enough execution to be representative
of more extensive tests. The experiment is run three times
with the Gibbs sampler updating 16, 64 and 128 pixels at a
time, essentially varying the number of simultaneous threads.
The results give an indication of the efficacy of the GPU
code. One would expect a CPU implementation to have similar
performance to the GPU at about 4 threads. Figure 3 shows
the time taken, in seconds, to complete 50 iterations in each
case.

As expected the time taken increases as the model be-
comes more complex, when more filters or colours are added.
However, there are some notable anomalies to this. In each
experiment the 2 colour run takes the longest time with one
filter. One would expect the 2 colour case to execute in
the shortest time because with fewer colours the are fewer
calculations. This inconsistency arises from the fact that all
the filters are not the same size. When the observation is

600

500 [

400

200

100

700

600 [

500 [

400 -

Time (s)

200

1600

1400

1200

1000

Time (s)

600 [

400

200

Fig. 3.

T
8 colours

— — —4colours
— - —2colours

2 3 4 5
Filters

(a) 128 pixels

800

8 colours
— — — 4 colours
— — 2colours g
- - _ P
-
~
e -]
-
~
-
.
~ |
~
~
. . .
2 3 4 5
Filters
(b) 64 pixels
8 colours P
— — —4colours -7
— —-2colours - A
- g A
-
F’e - -
_ -
_ - -
- P |
-
-
-
-
-
P |
-
-
-
-
P |
~
-
-
~
7 |
. . .
2 3 4 5
Filters
(c) 16 pixels

Timing data for different numbers of simultaneous pixels

downsampled to contain only two colours, the features become
very large, so the first filter to be selected is larger than that
selected for the 4 and 8 colour cases. The greater number of
operations required to use this large filter outweighs the time
saved by having fewer colours to consider.

The results clearly show that the more pixels which are
updated simultaneously, the faster the algorithm runs. The
upper bound on that number is set by the hardware and the
size of the image itself. If a program attempts to launch more
threads then the hardware can handle, some of the threads will
be queued, decreasing the performance. This negative impact
of this can be avoided by ensuring that the number of threads
is a multiple of the capacity of the GPU.

In this application it is incorrect to update too many com-
ponents at once. Since the filters are larger than a single pixel,
changing one pixel’s colour has an effect on a region of the
filter response. If two or more pixels with overlapping filter
regions are flipped simultaneously, the probabilities assigned
to their colours will be slightly inaccurate. The set of pixels
to be updated at each iteration of the Gibbs sampler is
chosen at random. It is possible that some of those will affect
overlapping regions. However, since only a small proportion
of the pixels is treated simultaneously — about 5 % — this
is unlikely and the chain is still able to converge.

The issue of overlapping filter regions limits the maximum
number of threads that may be used for a certain image
size. When the size of the image increases, in width and
height, the amount of pixels and therefore calculations required
to produce a sample increases quadratically. The number of
pixels that can be safely updated simultaneously increases
proportionally to the number of pixels. As a result the time
taken to run the GPU code increases linearly with the image
size within the limits of the hardware. This is a huge advantage
as it allows the algorithm to scale up to more complex
problems without incurring the penalty in execution time that
it theoretically should.

The same applies when the complexity is increased by
adding more colours to the palette. When going from 4
colours to 8 (the observation is almost the same in this case)
the number of calculations required to produce a sample
doubles. The graphs show that time increase between these
experiments is minimal. This is because the execution time on
the GPU does not change; more threads are added that can
run simultaneously. The small increase is due to the linear
operations done on the CPU in selecting the new colour to
assign to each pixel.

Consequently, the complexity of the problem can be in-
creased with minimal effect on the execution time. This feature
of the implementation is extremely useful for studying the
algorithm. It allows the code and parameters to be fine-tuned
on simple test cases with the knowledge that the same program
can be applied to more complex problems.

V. CONCLUSION

The FRAME algorithm is useful tool for visual texture
analysis. The algorithm is computationally complex, requir-
ing many calculations to be performed within hundreds of
iterations. Even with the speed of modern CPUs it can take
many hours to run the algorithm. The innermost function of the
algorithm is the Gibbs sampler. It takes extremely long to run
on a serial processor. By adapting the FRAME algorithm to
use a Gibbs sampler implemented on a GPU the computation
time is greatly reduced. This parallel implementation provides
a greater advantage as the problem becomes more complex.
The timing data suggests that the running time could be further
decreased by optimising the CPU code and by implementing
more components on the GPU. The FRAME algorithm is
shown to be considerably more feasible with the inclusion
of GPU programming.

ACKNOWLEDGMENT

The financial assitance of the National Research Foundation
(NRF), Anglo Platinum and the Department of Chemical
Engineering towards this research is hereby acknowledged.
Opinions expressed and conclusions arrived at, are those of
the author and are not necessarily attributed to the NRF.

REFERENCES

[1] A. Materka and M. Strzelecki, “Texture analysis methods - a review,”
Technical University of Lodz, Institue of Electronics, Brussels, Tech.
Rep. COST B11, 1998.

[2] S. Zhu, Y. Wu, and D. Mumford, “Filters, random fields and
maximum entropy (FRAME): Towards a unified theory for texture
modeling,” International Journal of Computer Vision, vol. 27, no. 2,
pp. 107-126, 1998. [Online]. Available: http://www.springerlink.com/
index/H8740U6GOHMJ686U.pdf

[3] W. J. Bolstad, Introduction to Bayesian Statistics, 2nd ed.
New Jersey: Wiley, 2007.

[4] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain
Monte Carlo in Practice. Chapman & Hall/CRC, 1996, ch. Introducing
Markov chain Monte Carlo, pp. 1-19.

[5] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions
and the bayesian restoration of images,” Journal of Applied
Statistics, vol. 20, no. 5-6, pp. 25-62, 1993. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/02664769300000058

[6] S. Zhu, X. Liu, and Y. N. Wu, “Exploring Texture Ensembles by
Efficient Markov Chain Monte Carlo - Toward a “Trichromacy” Theory
of Texture,” Pattern Analysis and Machine, vol. 22, no. 6, pp. 554-569,
2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=862195

[7] C. Andrieu, N. De Freitas, A. Doucet, and M. 1. Jordan, “An introduction
to memce for machine learning,” Machine Learning, vol. 50, pp. 5-43,
2003.

[8] G. Casella and E. George, “Explaining the Gibbs sampler,” American
Statistician, vol. 46, no. 3, pp. 167-174, 1992. [Online]. Available:
http://www.jstor.org/stable/2685208

[9] D. J. Spiegelhalter, N. G. Best, W. R. Gilks, and Hazellnskip, Markov

Chain Monte Carlo in Practice. Chapman & Hall/CRC, 1996, ch.

Hepatitis B: a case study in MCMC methods, pp. 21-43.

NVIDIA Corporation, “NVIDIA CUDA C Programming Guide,”

NVIDIA, Tech. Rep. Version 3.2, 2010.

Hoboken,

[10]

