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Abstract— The cheetah (Acinonyx Jubatus) is the fastest terrestrial animal and is also highly maneuverable. An 

investigation into the whole-body motion dynamics of this specialized predator will illuminate various factors that 

influence and affect performance in legged animals as well as provide insight for the design of future bio-inspired robots. 

Presently, animal sensor collars can capture the gross animal behavior successfully, but do not provide information 

about the animal's complete motion. Here, in an effort towards whole-body motion estimation, we demonstrate the use 

of animal mounted cameras, as well as the sensor suite of a smartphone which are attached to captive cheetahs during 

maneuvers. The various sensors are fused by an Extended Kalman Smoother to provide high-bandwidth state estimates 

of the position, velocity and acceleration of the cheetah spine and tail.  

 
Index Terms—animal tracking, cheetah, Kalman smoother, multi-sensor data fusion, IMU 

 

 

I. INTRODUCTION 

We seek to understand the locomotion of the cheetah, whose 

success in hunting has been attributed to its maneuverability [1]. 

However, the use of the spine and tail, which appear to be crucial to 

the cheetah’s dexterity, have not fully been analyzed. Indeed, studies 

have shown that the cheetah tail possesses aerodynamic effects [2] 

and that wheeled robots which emulate the tail motions can increase 

their acceleration performance [3] [4]. But deeper insight necessitates 

the capture of high-fidelity multibody kinematic data from live 

cheetahs. Insight obtained may be relevant to the design of the next 

generation of agile, bio-inspired robots. 

Obtaining this type data from free-running animals is challenging. 

Biomechanists regularly use stationary cameras for studying animal 

kinematics and have done so to investigate steady-state galloping in 

cheetahs [5]. This method is limited to a fixed capture area and as 

such would not be suitable for transient (non-steady) maneuvers 

which are often unplanned. Additionally, they require multiple 

calibrated cameras as well as time synchronization. 

Other researchers have opted for the use of animal-borne cameras 

to circumvent this problem to study the hunting strategies of falcons 

[6] and swimming in marine mammals [7]. However, the most 

popular method for studying free-running animals is tracking collars, 

which employ the use of a Global Positional System (GPS) sensor, 

inertial measurement unit (IMU) or magnetometer combination [1] 

[8] [9]. This approach has a theoretically infinite capture volume but 

is unable to capture the multibody kinematics of the animal. 

Here, we present a novel approach for motion capture of free-

running cheetahs which utilizes two animal-borne cameras, GPS 

sensor, pressure sensor and a 9-axis IMU, conveniently packaged in a 

smartphone for this initial investigation. This approach was tested as 

a proof-of-principle using off the shelf components on captive 
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cheetahs. The various sensors were fused by an Extended Kalman 

Smoother (EKS) to provide high-fidelity kinematic estimates of the 

spine and tail as shown in Fig. 1. The use of animal-attached sensors 

and multi-sensor fusion proposed here has the potential to enhance 

studies of biomechanics and maneuverability on free-ranging animals.

 
Fig. 1: Image of a tail flick taken from one of the animal-borne cameras.  

II. MOTION CAPTURE SYSTEM 

In this study, we combined the advantages of GPS/IMU tracking 

collars with those of animal-borne cameras. However, unlike [6] we 

aimed the cameras towards the rear of the animal to capture the 

motion of its spine and tail. Key points were then tracked and a 

multibody kinematic model is utilized for state estimation as 

described in Section III.  

A. Hardware 

Using their IMU and GPS sensors, smartphones have been shown 

to provide considerable accuracy for attitude estimation [10]. As such, 

we elected to use the Sony Xperia Z3 Mini (weight 106 g) which 

contains a GPS, IMU (3-axes gyro, accelerometer and magnetometer) 
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and a barometric pressure sensor. For the animal-borne cameras, the 

GoPro Hero Session was chosen as it is lightweight (74 g) and is 

capable of 720p resolution video at 100 frames per second. The 

system employed two of these cameras for stereo vision. For the 

proof-of-principle test on captive cheetahs, a GoPro Fetch canine 

harness was modified with a 3D printed holder for the cameras and 

smartphone, and is depicted in Fig. 2.  

 
Fig. 2: A GoPro Fetch harness was modified and used for attachment 

of sensors to the cheetahs. Colored markers were also attached to the 

tail and base of the spine. 

B. Software 

An Android application was written for the phone and its primary 

tasks were to: 

 Log sensor data from the phone at 100 Hz. 

 Synchronize the camera and phone data by using a beep 

sound at the start/stop of logging. 

To facilitate feature detection, colored bands were placed on the 

base of the spine (orange), middle of the tail (green) and tip of the tail 

(pink). A Matlab script was written to detect each color in a semi-

supervised manner and the two cameras were calibrated for intrinsics 

and extrinsics using the Matlab camera calibration toolbox.  

Temperature bias calibration of the gyro and accelerometer was 

performed, as well as magnetometer calibration against soft and hard 

iron effects. All estimation and calibration was done in Matlab. 

III. STATE ESTIMATION 

A. Kinematic Model 

To estimate the motion of the cheetah, the spine and tail were 

modelled as a kinematic chain consisting of 4 rigid links as shown in 

Fig. 3 based on previous work [2].  The position of the end of each of 

the links (2-4) relative to the inertial frame can be generally described 

as, 

 𝒑𝒊
𝟎 = 𝒑𝒊−𝟏

𝟎 + 𝑹𝒊
𝟎 (

𝐿𝑖

0
0

), (1)  

where 𝑹𝒊
𝟎  rotates a vector from frame 𝑖 to the inertial frame (0); 𝐿𝑖 

represents the length of the link 𝑖 ; and 𝒑
𝒊−𝟏
𝟎  is the position of the 

previous link. We express these rotation matrices as Euler angles 

(𝑟𝑜𝑙𝑙 − 𝜑𝑖 , 𝑝𝑖𝑡𝑐ℎ −  𝜃𝑖 , 𝑦𝑎𝑤 − 𝜓i) such that: 

 Link 1 (L1 – the collar): translates (𝒑
𝟏
𝑰 = [𝑥, 𝑦, 𝑧]𝑇) and 

rotates (Euler 3-2-1) relative to the inertial frame 

 Link 2 (L2 – back of the spine): for simplicity, we only 

allow to rotate in the pitch axis (𝜃2) relative to Link 1  

 Link 3 (L3): rotates in the pitch axis (𝜃3) and then rotates 

in the yaw axis (𝜓3) relative to Link 2 

 Link 4 (L4): rotates in the pitch axis (𝜃4) and then rotates 

in the yaw axis (𝜓4) relative to Link 3. 

 
Fig. 3: The cheetah is modelled as a kinematic chain consisting of 4 

rigid links. The markers (orange, green and pink) are located at the 

ends of links 2, 3 and 4 respectively. 

B. Measurements 

The system consists of several sensors which are sampled at various 

rates, summarized in Table 1. The marker measurements are 

asynchronous and are only available when the marker is not occluded. 

The measurement equations for the accelerometer, gyro and 

magnetometer are respectively expressed as, 

 

𝒛𝒂𝒄𝒄 = 𝑹𝟎
𝟏 (�̈�𝟏

𝟎 − [
0
0
𝑔

]) 

𝒛𝒈𝒚𝒓𝒐 = 𝑹𝝎
𝟏 𝝎𝟏

𝟎 

𝒛𝒎𝒂𝒈 = 𝑹𝟎
𝟏𝒎𝟏

𝟎, 

(2)  

where 𝑔  is the gravitational constant, 𝑹𝝎
𝟏  rotates the total angular 

velocity of Link 1 in the inertial frame (𝝎𝟏
𝟎) into Link 1’s frame and 

𝒎𝟏
𝟎 is the local magnetic vector expressed in the inertial frame. The 

GPS measurements provide the inertial position, velocity and heading, 

while the pressure measurement equation is based on the barometric 

formula for altitude [11].  

Table 1: Various data rates of the sensors are shown. 

Sensor Measurement Units Data Rate 

3D Accelerometer m/s2 100 Hz 

3D Gyro rad/s 100 Hz 

3D Magnetometer Gauss 100 Hz 

Pressure Sensor Pa 4 Hz 

2D GPS Position m 1 Hz 

2D GPS Speed m/s 1 Hz 

GPS Heading deg 1 Hz 

Camera 1 (Orange) 

2D pixel position As detected 

Camera 2 (Orange) 

Camera 1 (Pink) 

Camera 2 (Pink) 

Camera 1 (Green) 

Camera 2 (Green) 

Each camera measurement of a marker (𝑎) relative to the camera in 

Link 1’s frame (𝒑
𝒎𝒂

𝟏 ) is individually expressed for each camera’s 
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image plane (in pixels) using its perspective projection matrix 𝑪 as 

[12] 

 𝒛𝒎𝒂
= [

𝒄𝟏

𝒄𝟐
] [

𝒑𝒎𝒂
𝟏

1
] (𝒄𝟑 [

𝒑𝒎𝒂
𝟏

1
])

−𝟏

 (3)  

where 𝒄𝒃 is row 𝒃 of 𝑪. 

C.  Extended Kalman Smoother 

The kinematic states of the links (position, velocity and 

acceleration) were estimated, with the position vector expressed as: 

𝒒 = [𝑥 𝑦 𝑧 𝜑1 𝜃1 𝜓1 𝜃2 𝜃3 𝜓3 𝜃4 𝜓4]𝑇. (4)  

For the purposes of the filter, the system was modelled as having 

constant acceleration corrupted with noise covariance accounting for 

jerk. The motion of the animal is periodic while running, therefore, to 

aid estimation, the base of the spine (Link 2) was modelled as an 

oscillator with unknown frequency (𝐾, to model the first harmonic) 

and bias (𝐵) as additional state variables. This resulted in a state 

vector 

 𝑿 = [�̈� �̇� 𝒒 𝐾 𝐵]𝑇 . (5)  

To track the state variables (35 in total) adequately, an EKS was 

employed [13]. This consists of a forward pass Extended Kalman 

Filter (EKF), followed by a backward recursive smoothing algorithm 

to produce the smoothed state estimate (�̃�𝑘
𝑠 ) and covariance (𝑷𝑘

𝑆) 

described by the following1: 

 

𝑨𝑘 = 𝑷𝑘𝑭𝑘
𝑻[𝑷𝑘

−]−𝟏 

𝒙𝑘
𝑠 = 𝒙𝑘 + 𝑨𝑘(𝒙𝑘+1

𝑠 − 𝒙𝑘+1
− ) 

𝑷𝑘
𝑆 = 𝑷𝒌 + 𝑨𝒌(𝑷𝑘+1

𝑆 − 𝑷𝑘+1
− )𝑨𝑘

𝑇 

𝑘 = 𝑁 − 1, … ,0 

(6)  

where 𝑭 is the state transition matrix, 𝑨 is the smoother gain matrix, 

𝑁 is the final step, �̃�𝑘
− and 𝑷𝑘

−are the predicted mean and covariance 

of the state, �̃�𝑘 and 𝑷𝒌 are the estimated mean and covariance of the 

state vector, respectively at time step, 𝑘. The algorithm was executed 

at 100 Hz. 

To tune the filter, the covariances of the first derivative of the 

accelerometer and the second derivative of the gyro were used as 

estimates for the noise covariance on the acceleration states. For the 

measurement covariance estimates, the smartphone sensors’ variance 

was measured while the phone was kept stationary. The camera was 

calculated to track the markers within 5 pixels. 

After initial analysis, it was discovered that the tail angles tended 

to drift when the tail markers were not seen. However, wildlife 

footage and our stationary test footage indicated that the tail tended to 

be kept straight out backwards when not being swung actively. To 

account for this, a noisy pseudo-measurement (0, 𝜎 = 30°) was 

introduced whenever the markers were not detected.  

IV. EXPERIMENTS 

 
1 For the sake of brevity, we have not included the EKF algorithm equations. For 

more information, see [13]. 

The system was tested on three adult cheetahs at the Ann van Dyk 

Cheetah Centre (Pretoria, South Africa)2. Data was collected during 

the animal’s weekly exercise runs where they would chase a lure 

attached to a pulley-winch system. Standard EKF and EKS methods 

were used to estimate state vectors. An example of results for one of 

the cheetah runs is shown in Fig. 4A where the animal ran one way 

(to (𝑥, 𝑦) = [-100, -40] m) and then turned around sharply and ran back 

to the origin after approximately 9 s (sample 900). This sharp turn is 

noted by the estimates of the roll angle and corresponding heading 

angle change. 
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Fig. 4: (A) Link 1 position and attitude estimates are shown. Blue, Black 

and Red represents EKF, EKS and GPS data respectively. (B) The 

spine and tail angles are tracked throughout the entire run. 

As seen in Fig. 4A, the combination of measurements and assumed 

dynamic model results in tracking of the gross motion of the animal 

as well as the periodic spine motion. This periodic behavior is 

compatible with the video observations. Lastly, as illustrated in Fig. 

5, the system can track the high-speed tail flicks.  

2 Ethics approval was obtained from the University of Cape Town Health Science 

Faculty Animal Ethics Committee 



2475-1472 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2017.2716618, IEEE Sensors
Letters

 Volume 2(3) (2017)                             

1949-307X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications standards/publications/rights/index.html for more information. (Inserted by IEEE) 

 
Fig. 5: Example of a high-speed tail flick tracked by the EKS algorithm is shown above and compared to the camera footage. 

 

V. CONCLUSION & FUTURE WORK 

By combining the advantages of GPS/IMU collars and animal-

borne cameras, we can track the detailed motion of the cheetah 

multibody kinematics without the need for external cameras.  

This approach could enable biomechanics studies of 

maneuverability in not only the cheetah but free-running animals in 

general. There are two avenues for future work: 

 For this approach to be applicable for tracking free ranging 

animals, size, weight, power and cost (SWap-C) must be 

considered. This can be achieved by designing a bespoke 

embedded system with a photovoltaic panel for power harvesting 

as done in previous studies [1] [8]. The system would require a 

wireless link for the download of data, as well software to put 

the system into a low power mode when the animal is stationary 

and then wake it up when activity is detected [1]. Even though a 

harness offers better stability on the animal, it may be impractical 

to mount on a wild animal, thus a collar based system should be 

considered. The GoPro cameras could be replaced by miniature 

camcorders embedded in the collar as done in [6]. 

 Secondly, to obtain the motion of the limbs, wireless IMUs (e.g. 

XSens or Notch sensors), could be attached to legs in various 

positions as done in equine limb studies [14]. This would allow 

the complete body (limbs, spine and tail) kinematics of the 

animal to be estimated through fusing a more detailed model 

(additional links for each limb) with additional measurement 

equations and the animal-borne camera data.  
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