Fourier series and an RC circuit

Circuit

Resistor R in series with capacitor C, input z(t) is voltage across combination, output y(t) is
voltage across capacitor.

Resistor:
vy (t) = Ri(t)
Capacitor:
. d
i(t) = Calu(t)
and

v(t) = ve(t) + vp(t)
Eliminating i(¢) and letting v(¢) = z(t) and y(t) = v.(t) gives DE

() = Rcdi—it) +y(t)

System interpretation

The system is linear (linear constant coefficient DE), and therefore has an impulse response h(t).
(Don’t yet know how to find it.)

The input/output relationship can therefore be written in the form
y(t) = h(t) * z(t)

Input complex exponential z(t) = c;e/“ot:
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Finding output coefficients

Return to DE: ()

Y
— t
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Consider input z(t) = cje/“°!. Know the output is of the form y(t) = die/“ot. Coefficient c; is
known: want to find d;.

Substitute into DE and solve:

z(t) = RC

d .
crefot = RCo [die70] + dye?ot
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Multiple component signal
Input complex exponential x(t) = ¢1e/“ot + cpei2wot:
y(t) = / h(N)z(t — N)dX
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Complex exponentials in, complex exponentials out at same frequencies. Only need to find the
coefficients d; and dy given ¢; and ¢

Coefficients for multi-component signal
You can (and should) do same for two-component signal. Let
z(t) = c1e?0t f cped 0t
y(t) must be of form
Y(t) = dye! 4 dyelot,
substitute into the DE and solve (algebraically!) for d; and ds.

In general, if input and output are

z(t) = Z cpetheot and y(t) = Z dje?keot,

k=—00 k=—oc

then

J 1
R
k= 1+ jkwoRC™*

In general

If there is a LCCDE linking inputs and outputs, the FS coefficients for input and output will be
found to obey

dk = H(lcwo)ck
where for the RC circuit we have 1
~ 1+ jwRC
To work out how a signal is modified by the circuit, only need to know the values of H(w) at the
frequencies present

H(w)

H(w) is just a complex number for each value of frequency w. The plot of the magnitude and
phase of H as a function of w is called the Bode plot of the system.



Bode plot for RC circuit
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Observe
Time domain description of signals z(t) and y(t) — differential equation linking input and output
of system. Can solve for y(t) given z(¢), but no intuition.

Instead, think about signals as (weighted linear) combinations of complex exponentials (or com-
binations of frequencies)

w(t) = Z cpe?® ot and  y(t) = Z dye?hwot

k=—o0 k=—00
— algebraic equation linking input and output:
dk = H(ka)Ck

Much easier to understand.

One component approximation to square wave
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Many component approximation to square wave
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