Fourier series: Additional notes



Linking Fourier series representations for signals



Rectangular waveform
Require FS expansion of signal y(t) below:
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Period T =8, so wp =27/ T = 27 /8 = w/4 and the signal has a FS
representation

y(t): Z dkejk(w/4)t.

k=—o0

We could find the FS coefficients using the formula
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but will do something simpler (and more interesting) instead.



Rectangular waveform: derivative signal

Consider instead the derivative of the previous signal z(t) = £ y(t):
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This also has a period T =8, and a FS representation

Note that this is of the same form as the FS for y(t), just with a
different set of coefficients.



FS coefficients for derivative signal

Find the FS coefficients for z(t) by integrating over one complete period.
Choose the interval t = —2 to t = 6 to avoid integrating over half a
Dirac delta (we're free to choose the integration range as long as we
integrate over one period):

6
fo= 1 / 2(t)e T/ gy — / [26(t) _ a)]e—H /0t gy

/ (5 7Jk(7r/4)tdt / 5 7]/( 7r/4)tdt

——/ 5(t)e*fk(”/4)°dt—z/ 5(t — 4)e KT/t gt
-2

6
_Jk 7 /4)0 / 5 %e—jk(w/4)4/ 5(t — 4)dt
-2

=3¢
_ L kmsmo _ L i /aya
—5° T3
1 .

(1 — —jkm )
(L=



Rectangular waveform: Relationship between coefficients

Since z(t) = Zy(t), we can find a relationship between the coefficients:
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But the FS for y(t) is of the same form
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so each of the coefficients must be equal:

fi = dijk(r/4) :jk%dk.



Rectangular waveform: Relationship between coefficients
The FS coefficients di (for the square wave) are related to the
coefficients f (for the derivative signal) by
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This formula will work for all k except k = 0 (where it becomes an
indeterminate form — division by zero). To find dp, just go back to y(t)
and calculate directly:

do — /OSy(t)dt _ é/:(l)dt—i— é/j(—l)dt 0.

Therefore the FS coefficients di of y(t) are
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Rectangular wave: FS coefficient plot

Fourier series coefficients for rectangular wave
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Triangular waveform

Now find the FS coefficients of x(t) below:
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Period T =8, so wg =27/ T = 27w /8 = w/4 and the signal has a FS

representation
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x(t)= Y aelt/or,

k=—o00



Triangular waveform: FS coefficients

We could find the FS coefficients using the formula
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Two of these integrals are easy, but two have to be done by parts.

Exercise 1: Calculate the FS coefficients for the above.



Triangular waveform: alternative method
Consider instead the signal y(t) = Zx(t):
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This also has a period T =8, and a FS representation

y(t): Z dkejk(w/4)t

k=—o00

and the coefficients were found earlier to be
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Triangular waveform: Relationship between coefficients

As before, since y(t) = < x(t) a relationship exists between the

= dt
coefficients:
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But the FS for y(t) is of the same form
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so each of the coefficients must be equal:
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Triangular waveform: Relationship between coefficients

The FS coefficients ¢, (for the triangular wave) can therefore be found
from the coefficients di (for the square wave) using
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as long as k # 0. To find ¢, just go back to x(t) and calculate directly:
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The FS coefficients for x(t) are therefore
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No integration by parts needed!



Triangular wave: FS coefficient plot

Fourier series coefficients for triangular wave
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Check with Matlab

j = sqrt(-1); % to be sure
tv = -6:0.001:14; % time values (a row vector)
xv = zeros(size(tv)); 7% signal values initially zero
N = 10; % highest term in synthesis equation
for k=-N:N
% Current complex exponential values (a row vector)
xcv = exp(j*k*pi/4xtv);

% Coefficient for current complex exponential
if k==0
ck = 0; % DC
else
ck = 4/((j*k*pi)~2)*(1 - exp(-j*k*pi)); % formula
%heck = 1/(Gxk*kpi)*(1 - exp(-j*xk*pi)); % y(t)
%hck = 1/4%(1 - exp(=j*kxpi)); % z(t)
end

% Add scaled complex exponential to signal values
XV = XV + ck*xcv;

end

plot(tv,real(xv)); 7% the values *should* be real

Exercise 2: Run the above code in Matlab.



Triangular wave: synthesis

Synthesised triangular waveform (N=10)
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Exercise 3: Find the FS of the signal below:
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Notes

Some interesting observations:

1. Triangular waveform is continuous (quite smooth), but has
discontinuous derivatives — FS coefficients decreases as = — they
decrease very quickly as frequency increases.

2. Rectangular waveform is discontinuous (less smooth than triangular

waveform) — FS coefficients decreases as L — more slowly.

3. Smooth waveforms generally contain less high frequency
components — their coefficients go to zero closer to the origin in
the frequency domain.

4. Alternatively, to reconstruct a signal with fast variations (i.e.
discontinuities) requires large components at high frequencies.



Linking coefficients for other transformations

Consider a signal x(t) with period T: it has a FS expansion
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X(t): Z Ckejkwot

k=—o

with wo =27/ T.

Let y(t) be a signal related to x(t). If y(t) is also periodic with period T
then it has a FS expansion

y(t) = Z dkejkwot.

k=—o00

and the coefficients ¢, and dj are related.



Relationship for shift transformation

Consider the case where y(t) = x(t — a) for some a. Clearly y(t) is
periodic with the same period as x(t), and
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The coefficients are therefore related by
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Thus a shift corresponds to a change in the phase of each coefficient,
where the amount of the change is proportional to the size of the shift.



Exercise 4: Find the FS of the signal below, using the series coefficients
¢k found earlier for x(t):
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