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Abstract—The classification of medical images is an important
step for image-based clinical decision support systems. With the
number of images taken per patient scan rapidly increasing,
there is a need for automatic medical image classification
systems that are accurate because manual classification and
annotation is time-consuming and prone to errors. This paper
focuses on automatic classification of X-ray image from the
ImageCLEF 2009 dataset based on anatomical and biological
information using the InceptionV3 model. The X-ray images
are prepared and preprocessed with two different padding
techniques, two image enhancement techniques and layering to
convert the grey-scale images to 3-channel images to prepare
them for InceptionV3. In terms of classification loss, constant
padding with no enhancements had the best performance
with an accuracy of 68.67% and a loss of 1.442. In terms of
classification accuracy, constant padding with enhancement had
the best performance with an accuracy of 71.34% and a loss of
1.608.

Index Terms—Convolutional Neural Networks, X-ray, Classi-
fication, Transfer Learning, CBMIR.

I. INTRODUCTION

With the advances in digital technology, medical facilities
are producing large amounts of medical imaging data resulting
in an exponential increase in medical image repositories.
Over the years, medical imaging has and will continue
to play an important role in modern healthcare aiding
healthcare professionals by providing relevant information
about anatomical and biological structures, which improve
analysis and diagnosis. The rapid advancements in medical
imaging, producing more data in different modalities has
introduced a problem. Radiologists have to analyse more
data and maintain quality and efficiency. Therefore the
development of systems that can automatically interpret,
analyse, and categorise medical images are needed to aid
effective diagnosis.

Convolutional neural networks (CNNs) are driving
major advances in many computer vision tasks, such as image
classification [1], object detection [2], and image segmentation
[3]. This motivates us to apply CNNs to perform automatic
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classification on medical images.

This paper focuses on automatic classification of X-ray
image from the ImageCLEF 2009 dataset based on anatomical
and biological information. The rest of the paper is organized
as follows. Related work is presented in Section II, the pro-
posed method is discussed in Section III, experimental setup
is discussed in Section IV, results are shown and discussed in
Section V and a conclusion is presented in Section VI.

II. RELATED WORKS

The aim of content-based medical image retrieval (CBMIR)
is to aid healthcare professionals with diagnosis by searching
through a medical image database to find images that are
perceptually similar to a query image. CBMIR requires
accurate and efficient search algorithms for the vast databases
of medical images. X-ray imaging is the most widely used
medical imaging modality today as many healthcare facilities
are equipped with X-ray scanners and maintain their own
database of images. Annotation and feature extraction is an
important component in a CBMIR system.

A variety of methods exist for medical image feature
extraction and classification. Ganesan and Subashini [4], au-
tomatically classify X-rays at the macro level (coarse level)
using a support vector machine (SVM) classifier with six
classes of X-ray images. Using the ImageCLEF 2007 dataset
[5] their classification task started with extracting local in-
variant features from all images. A generative model such as
probabilistic latent semantic analysis (PLSA) was applied on
extracted features in order to provide more stable represen-
tation of the images. Subsequently, this representation was
used as input to a discriminative SVM classifier to construct
a classification model. Aboud et al [6], presents the results
of an experimental evaluation of X-ray images classification
in the ImageCLEF-2015 challenge. They found best classifi-
cation results were obtained using the intensity, texture and
HoG features and the KNN classifier. Pelka et al [7], used
enhancement techniques to improve classification accuracy. To
evaluate the image enhancement techniques, five classification
schemes including the complete IRMA code were adopted.978-1-7281-4162-6/20/$31.00 ©2020 IEEE



Two pretrained models (Inception-v3 and Inception-ResNet-
v2, and Random Forest models) were trained using extracted
Bag-of-Key points visual representations. The classification
model performances were evaluated using the ImageCLEF
2009 Medical Annotation Task test set. The applied visual
enhancement techniques proved to achieve better annotation
accuracy in all classification schemes.

III. METHOD

In this work an automatic classification of X-ray images for
medical image retrieval with convolutional neural networks is
implemented.

A. ImageCLEF 2009 Dataset

ImageCLEF 2009 is a medical dataset that consists of
X-ray images taken randomly from medical routine for a
medical annotation task. The dataset represents multiple cases
with respect to patient’s age and gender, viewing position
and pathologies. The training set consists of 12,677 grayscale
images and the evaluation set has 1,733 grayscale images.
The dataset uses a Image Retrieval in Medical Applications
(IRMA) coding system to annotate the X-ray images. The
dataset has 193 classes.

Fig. 1. Sample images from ImageCLEF 2009 dataset with their respective
IRMA codes [7].

The IRMA coding system consists of four axes with three
to four positions:

• T (technical): image modality
• D (directional): body orientation
• A (anatomical): body region examined
• B (biological): biological system examined

These axes create a short and unambiguous 13-character
string notation (TTTT–DDD–AAA–BBB) [8]. The T-axis
consists of a 4-character string which denote physical source,
modality position, techniques and sub-techniques. The D-axis
consists of a 3-character string which denote the orientation
plane of the radiographs (e.g. coronal, sagittal, transversal,

other) and has a more detailed specification in the second
position (e.g. posteroanterior, anteroposterior). The A-axis
consists of a 3-character string and denotes body regions
and 2 hierarchical sub-regions. The B-axis consists of a
3-character string which denote organ system [8].

Fig 1 shows two radiographs with the IRMA codes 1121-
127-732-500 and 1121-410-620-625, which represent “Xray
Analog Overview Image; Coronal Anteroposterior Supine;
Lower Middle Quadrant; Uropoietic System” and “Xray Ana-
log Low Beam Energy; Other Oblique Orientation; Left
Breast; Reproductive Female System Breast” [7]. A complete
list of the IRMA code representation is given by Lehmann et
al. [8]. High class imbalance was added to the ImageCLEF
dataset to promote the function of prior knowledge encoded
into the hierarchy [9]. The images in the test set were mainly
from classes which had only a few examples in the training
data, making annotation significantly harder [10].

B. Image Preprocessing

The X-ray images in the IRMA dataset are prepared and
preprocessed with two padding techniques, Contrast Limited
Adaptive Histogram Equalization (CLAHE), Non Local Means
(NL-MEANS) and layering to convert the grey-scale images
to 3-channel images. Fig 2 displays an X-ray image from
the dataset that will be used to illustrate the effect of each
technique.

Fig. 2. Original X-ray image with from ImageCLEF 2009 Dataset.

1) Padding: Images in the IRMA dataset have various
sizes, hence padding is performed to resize the images to
512 × 512. Firstly the images are padded with a constant
padding (using OpenCV’s BORDER CONSTANT) that
fills surrounding pixels with zeros, as seen in Fig 3. In the
second padding seen in Fig 4 also implemented Pelka et al,
images are padded with their repetition (using OpenCV’s
BORDER WRAP).

2) Image Resizing: In order to bring images of various
sizes to the same size, all the images have been resized to
512× 512 using nearest neighbor interpolation. The result of
applying this preprocessing technique to a grayscale X-ray
image of random size is illustrated in Fig 7.

3) CLAHE: CLAHE is a contrast enhancement method,
modified from the Adaptive Histogram Equalization (AHE). It



Fig. 3. Constant padding Fig. 4. Repetitive padding

is designed to be broadly applicable and having demonstrated
effectiveness, especially for medical images [7]. The
CLAHE output images were obtained using the OpenCV’s
implementation with the following parameters:

• clipLimit : 2.55
• tileGridSize : (8,8)

4) NL-MEANS: This is a digital image denoising method,
based on a non local averaging of all present pixels in an
image [7]. The NL-MEANS output images were obtained
using the OpenCV’s implementation with the following
parameters:

• filter strength : 2
• templateWindowSize : 4
• searchWindowSize : 4

5) layering: Images in ImageCLEF dataset are grey-scale
and need to be converted to 3-channel RBG images for the
InceptionV3 pretrained model, we followed a simlar process
to [7] to create the RBG images. The first layer was ob-
tained from the CLAHE output of the same image and the
second layer from the NL-MEANs output. The RGB image
is obtained from adding the two layers to the original X-ray
image. The resulting image is displayed in Fig 5 and Fig 6
for Constant padding and reflective padding respectively. Fig
8 shows the result of applying the Layering technique to a
resized image.

C. Network Architecture and Implementation

Considering the number of images in the ImageCLEF
2009 Medical Annotation Task, the adaptation of transfer
learning with the pre-trained InceptionV3 model was done.
InceptionV3 is a convolutional neural network that is trained
on more than a million images from the ImageNet database
[11]. The network is 48 layers deep and can classify images
into 1000 object categories. In our implementation, We remove
the last layer and add a global average pooling layer followed
by a 1024 kernel Dense layer with a relu activation and for
the last layer we have a Dense layer with a softmax activation.

Fig. 5. Constant padding Fig. 6. Repetitive padding

Fig. 7. Resizing Fig. 8. Resizing & Layering

IV. EXPERIMENTAL SETUP

For the InceptionV3 pretrained model, we used the Keras
framework with a TensorFlow back-end. The training was run
on 2 NVIDIA KeplerK40M and RAM of 12GB DDR5 per
GPU.

A. Training

We used InceptionV3 with weights from ImageNet. The
model was fine-tuned with ImageCLEF dataset with the
following hyper-parameters: The model was trained using a
stochastic gradient descent (SGD) optimizer with a learning
rate of 0.01 and decay of 1e-6. We trained with a batch
size of 16 for 25 epochs. The categorical crossentropy loss
function was used during training.

The performance of the InceptionV3 model was evalu-
ated on four different experiments with the prepossessing
techniques detailed in Section III-B. We use two padding
techniques, and each technique is ran twice without enhance-
ments and with enhancements ( Contrast Limited Adaptive
Histogram Equalization and Non Local Means).

V. RESULTS & DISCUSSION

Evaluation of the performance of the InceptionV3 model
for each experiment was performed on the official test set of
1,732 images from the ImageCLEF 2009 Medical Annotation
Task. The classification Accuracy of the model with the
different image processing techniques with and without the
random rotation are listed in Table I. The image inputs are



Repetitive (with the original images being padded with their
repetitions and 3-channels created by placing the same image
in all 3 channels), Repetitive-Enhanced (with the repetitive
padding and 3 channels created with the NL-Means and
CLAHE outputs). Constant and Constant-Enhanced image
input are similar to the repetitive inputs but have a constant
padding.

TABLE I
CLASSIFICATION ACCURACIES

Image Input No Enhancement Enhanced

Resize 68.90% 64.87%
Repetitive 67.92% 67.80%
Constant 68.67% 71.34%

The corresponding classification losses of the model with
the different image processing techniques with and without
the random rotation are listed in Table II.

TABLE II
CLASSIFICATION LOSSES

Image Input No Enhancement Enhanced

Resize 1.520 1.611
Repetitive 1.612 1.508
Constant 1.442 1.608

With no Enhancements (ie. CLAHE and NL-Means), the
model performed the best in terms of loss had an input
with constant padding with a loss of 1.442, and in terms of
accuracy the model performed the best with resized inputs
and no padding with an accuracy of 68.90%.

With Enhancements (ie. CLAHE and NL-Means), the
model performed the best in terms of loss with a repetitive
padding with a loss of 1.508, and in terms of accuracy the
model performed the best with constant padding with an
accuracy of 71.34%.

For the repetitive padding, enhancements improved the
loss but also reduced the accuracy. For the constant padding,
enhancements also increased the loss but also improved
the accuracy. For the resized inputs, enhancements did not
improve performance in terms of loss and accuracy, the model
decreased in performance.

Using an stochastic gradient descent (SGD) optimizer, in-
stead of the root mean square propagation optimizer used
by Pelka et al. improved the accuracy by approximately
20% compared to the accuracy reported by Pelka et al. [7].
Although Pelka et al. did not report on the loss, we replicated
their results and got a loss of 3.71. Therefore the SGD
optimizer also improved the loss.

VI. CONCLUSION

This paper focuses on automatic classification of X-ray
image from the ImageCLEF 2009 dataset based on anatomical
and biological information used pretrained model InceptionV3.
The X-ray images in the ImageCLEF 2009 dataset are pre-
pared and preprocessed for training InceptionV3. In terms
of classification loss, constant padding with no enhancements
during training had the best performance. In terms of classifi-
cation accuracy, constant padding with enhancement had the
best performance. overall inputs with constant padding have
the best performance.
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