
1. INTRODUCTION 

Voltage dip characterization can be described as “the 
description of voltage dip events through a limited 
number of parameters” [1]. 

The requirements of characterization vary depending 
on application, and include [1]: 

• Utility statistical dip performance reporting 
for its transmission and distribution systems, 

• The description of dip performance at a 
particular site for use by utility customers. 

• Contracting with end-customers, 
• Definition of equipment dip immunity 

requirements, 
• Definition of equipment dip immunity test 

requirements. 
 
These characterisation applications are primarily 
driven by the response of end-user equipment to 
voltage dips and the ability of the utility to monitor 
and report voltage dip performance and analyse 
causes. 
 
Additionally, characterisation can be conducted as an 
input to automated classification techniques, with the 
purpose of saving time spent by specialists manually 
analyzing data recorded by power quality monitors, 
protection relays and digital fault recorders [2].   
 
In light of this requirement of characterisation, the 
aim then becomes “to find common features that are 
likely related to specific underlying causes in power 
systems” [3]. 

This paper investigates the characterization of 
voltage dips with aim of selecting suitable feature 
extraction tools for the analysis of events. 

The structure of the paper is as follows: Section 2 
reviews characterization of voltage dips, Section 3 
discusses signal processing tools that are commonly 
applied in characterizing voltage dips. Section 4 
discusses the selection of tools for feature extraction. 
Section 5 concludes. 

2. CHARACTERISATION OF VOLTAGE DIPS 
 
2.1 Residual Voltage and Longest Duration 
 

Voltage dips are commonly characterised by the 
lowest voltage and longest duration measured across 
all channels [4].   
 
IEC 61000-4-30 identifies this characterisation of 
voltage dips as a useful way of reducing data, 
interpreting and categorizing events [5]. Voltage dip 
duration is defined by IEC 61000-4-30 as the time 
from when the R.M.S. voltage on one phase drops 
below the dip threshold to the time when all three 
phases are above the dip threshold. This is illustrated 
in Figure 1. 

 
Figure 1: Dip Duration Characterisation [1] 

 
Many utilities record only RMS voltage for statistical 
purposes and it is not possible to determine voltage 
characteristics without phasor information [6].    
Bollen et al. [6] recognises that this limits the 
information on the voltage dip as seen at the end-user 
terminal. In practice a power quality monitor 
recording only RMS voltages may be the only 
information available to analyse voltage dips. This 
makes feature extraction from RMS data a key 
concern. 

2.2 Symmetrical Component  Method  

The symmetrical component method [7, 8] classifies 
voltage dips in terms of changes in both the 
magnitude and phase angle. A dip is classified by a 
characteristic voltage and a PN factor and the method 
attempts to classify it into one of two main categories 
C (2-phase dips) and D (single phase dips). It is 
further identified by a subscript that indicates the 
symmetrical phase i.e.  the least dipped phase for 
type C and most dipped for type D. 

2.3 ABC Classification  

The ABC classification [9] distinguishes between 7 
different types of unbalanced three-phase voltage 
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dips (A-G).  Table 1 illustrates   the dipped phases 
for each dip type according to the ABC classification 
and provides a comparison with the symmetrical 
component method. 

Table 1: Examples of Dip Vectors for ABC 
Classification 

The ABC classification is a special case of the 
symmetrical component method and has a number of 
benefits including [9]: 

• It is a more intuitive classification that does not 
require the study of symmetrical component 
theory,  

• It provides an easy to understand graphical 
interpretation of the propagation of unbalanced 
voltage dips through transformers. This is 
illustrated in Figure 2 for the translation through 
Dy transformers. 

Figure 2: Dip Propagation [9] 

 
 

2.4 Dip Segmentation Method 

Styvaktakis [10] introduces segmentation of power 
quality events as part of an automated classification 
method based on the underlying causes of voltage 
dips. 
 
Djoki and Bollen [11] present the dip segmentation 
method as an approach for the analysis, description 
and characterisation of voltage dips in power systems 
and at end-user equipment terminals.  

 
It is introduced to allow an improved assessment of 
factors and parameters possibly influencing the 

sensitivity of equipment at different voltage levels. 
The method is introduced with the intention of 
helping users and designers of electrical equipment to 
“quantify, test and compare performance of their 
equipment in a simple, consistent, transparent and 
reproducible manner….” [11]. 
 
The method aims to extend the description of dips 
beyond a single magnitude and duration as [11]: 
• Differences between the 3 phase voltages are not 

considered, 
• Voltage dips are not always rectangular , 
• Phase-shift and point-on-wave are not 

considered. 
 
The method is based on the separation of recorded 
dip events into “dip segments” where a segment is 
described as a period of time during which the 
voltage magnitude and other properties of the voltage 
waveform remain more or less constant.  The general 
description of a dip, regardless of type, based on the 
dip segmentation method consists of [11]: 

 
• One pre-event segment – provides a description 

of the relevant voltage characteristics  
immediately before the dip occurs 

• Zero, one or more  during-event segments – 
provide a description of dip characteristics  
during which the voltage magnitude is constant 

• One or more transition segments – provides a 
description of dip characteristics during the 
transition between two steady states.  

• One post-event  or voltage recovery segment – 
provides a description of voltage characteristics 
after the cause of the dip is cleared or eliminated 

 
Figure 3 illustrates the segmentation of a multi-stage 
voltage dip. 
 

 
Figure 3: Segmentation of a multi-stage voltage dips [11] 

 
The description of voltage dips in the dip 
segmentation method consists of [12]: 
• Number of transition segments, duration of event 

segments 
• Characteristics of the pre-event segment 
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• Characteristics of the event segments 
• Characteristics of the transition segments 
• Characteristics of the voltage recovery segments 
 
A feature of the dip segmentation method is that it 
recognises includes the pre- and post-dip segments 
which fall outside of the time period of the actual 
voltage dip. 
 
CIGRE/CIRED/UIE working group C4.110 
introduces a table of voltage dip characteristics based 
on the  dip segmentation method   to be  “used as a 
“check-list” for a fast and transparent assessment of 
equipment and process sensitivity to voltage dips 
during all stages of equipment and process design” 
[12].   

Table 2: Dip Segment Characteristics [12] 
 

Dip Segment Characteristics 
Pre-Event 
Segment 

Voltage magnitude 
Phase angle 
Harmonics 
Voltage unbalance 
Frequency 

During Event 
Segment 

Dip magnitude 
Dip Duration 
Dip Shape 
Dip Voltage Unbalance 
Dip phase angle unbalance 
Dip phase shift 
Distortion 
Transient 

Transition 
Segment 

Dip Initiation 
Point-on-wave of dip initiation 
Phase shift at the dip initiation 
Phase shift at the dip initiation 
Multistage dip initiation 
Dip ending 
Point-on-wave of dip ending 
Multistage dip ending 
Rate-of-change of voltage 
Damped oscillations 

Post-Event 
Segment 

Voltage recovery 
Post-fault dip (prolonged voltage recovery) 
Post-dip phase shift 
Multiple dip events (dip sequences) 
Multiple dip events 
Composite dip events 
Rate-of-change of voltage 
Voltage recovery time constant 
RMS voltage 

 
The C4.110 checklist provides a structured list of 
characteristics for detailed analysis of voltage dips as 
a starting point for further characterisation and 
analysis of voltage dip events. 
 

2.5 Summary and Conclusions of Characterisation 

Four methods of characterisation of voltage dips have 
been presented and their key features discussed: 
• The RMS voltages may be the only information 

available to analyse voltage dips. This makes 
feature extraction from RMS data a key concern. 

• The ABC classification provides an intuitive 
insight into three phase unbalanced dips and 
their propagation through the network. 

•  The dip segmentation provides   a methodology 
to conduct detailed analysis and characterisation 
of voltage dips and understand propagation 
through a network. 

• A basic list of requirements to meet analysis in 
line with the dip segmentation method is 
outlined. 

 
Any further analysis for feature extraction purposes 
will require that the tools used for feature extraction 
have the capacity to meet the analysis requirements 
of the individual dip segments, namely: 
• High speed capability  for transition segments 
• Extraction of phase angle for point-in-wave 

analysis, 
• Extraction of voltage magnitude and rate of 

change. 
 

3. SIGNAL PROCESSING TOOLS FOR 
CHARACTERISATION 

The methods for analysis and classification of power 
quality events consist of a number of steps each 
requiring specific tools [10]: 

• Segmentation, 
• Feature extraction, 
• Additional processing, 
• Classification. 

 
The process and individual steps for analysis and 
classification are illustrated in Figure 4. 

 
Figure 4: Analysis and Classification of Power 

Quality Events [10] 

This discussion will focus on the tools required for 
segmentation and feature extraction of event data for 
input to classification. 

Triggering (event detection) and segmentation are 
commonly treated as two separate topics in the 
literature [13] but both these processes require the 
detection of nonstationarity in a signal.  A signal is 
stationary when it is statistically time invariant [13] 
i.e. its statistical properties do not change as a 
function of time. A non-stationary signal is therefore 
a signal for which the statistical properties change 
with time. 

Event detection is commonly used in for online 
capturing of events and event segmentation takes 
place afterwards during event analysis [13] 

 

3.1 Methods for Analysis 



The following tools are commonly discussed in 
literature for analysis of power quality events [10, 
13]. 

3.1.1 RMS Method 

The general equation used to calculate RMS is: 
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 Event identification via RMS is done by comparing 
change in magnitude with a predetermined threshold. 
Application of RMS requires simple signal 
processing and is recognised as being very efficient. 
It is widely used in power quality instruments that 
monitor RMS. 

Bollen et al [6] recognise the importance of phasor 
information and introduce a method to deduce 
phasors from RMS voltages for analysis purposes. 

For analysis purposes a method of segmentation 
based of rate of change is introduced in [10] and 
finds application in a classification system based on 
RMS voltage only. 

3.1.2 Short -Time Fourier Transform (STFT) 
 
The short time Fourier transform of a signal v[k] is: 
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Where =2n/N, N is the length of v[k], n=1……N, 
and w[k-m] is a selected window that slides over the 
analysed signal 

The STFT has limitations due to its fixed window 
length, which has to be chosen prior to the analysis. 
This drawback is reflected in the achievable 
frequency resolution when analysing non-stationary 
signals with both low and high-frequency 
components [14]. 

3.1.3 Park Vector - DQ Transform 
Park’s vector is based on the instantaneous vector 
sum of all of the three phase vectors (v1, v2, v3).  The 
Park transform finds general application in the field 
oriented control of induction motors. The vector 
components (vd, vq) are given by [14]: 
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3.1.4 Wavelet analysis  

The wavelet transform is based on the decomposition 
of a signal into daughter wavelets derived from the 
translation and dilation of a fixed mother wavelet.  
The general formula is given by: 
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Wael et al. [15] point out that the application of 
wavelets to feature extraction is well researched and 
documented. The most popular applications of 
wavelets in power systems literature are [16]: 

• Power system protection 
• Power quality 
• Power system transients 
• Partial discharge 
• Load forecasting 
• Power system measurement 

3.1.5 Multi-resolution S-Transform 

The S-Transform is described as being either a 
phase-corrected version of the wavelet transform or a 
variable window Short Time Fourier transform that 
simultaneously localizes both real and imaginary 
spectra of the signal [17]. It is defined by convolving 
the analyzed signal, v[k], with a window function. 
The S-transform of a discrete signal v[k] can be 
calculated as: 
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where k,m and  n = 0,1……N-1  and V[m+n/N] is the 
fourier transform of the analyzed signal v[k]   
=2n/N, N is the length of v[k][17] . 

3.1.6 Extended Kalman filter 

Kalman filtering is a parameter based modelling of 
an assumed process.  If the process is non-linear then 
a linearization process is carried out and this leads to 
the extended Kalman filter. 
 
Extended Kalman filtering provides good 
performance in both the detection of events and the 
estimation of event magnitude and duration [17]. 
Power system applications of Kalman filtering 
include [13]: 
• Continuous real-time tracking of harmonics, 
• Estimation of voltage and current harmonics for 

protection systems, 
• Estimation of transient parameters. 
 
Styvaktakis [10] discusses the application of Kalman 
filters to: 
• Voltage magnitude estimation and the 

limitations  in the presence of harmonics and 
short duration events, 

• Segmentation of disturbance recordings and 
• Voltage dip detection. 

He concludes that the order of the model used by the 
Kalman filter significantly affects the magnitude 
estimate for the types of changes he identifies (fast, 
slow and fast repeating). 
 
Further parameter-based methods for feature 
extraction discussed in the literature include multiple 
signal classification method (MUSIC), estimation of 
signal parameters via rotational invariances 
(ESPRIT), stochastic models e.g. auto regressive 



(AR), auto-regressive moving-average (ARMA) and 
state space [13]. 

3.1.7 Method of Ziarani and Konrad 

Ziarani and Konrad present a method of extracting 
nonstationary sinusoidal signals via a nonlinear 
adaptive filter and estimate the following parameters 
[18]: amplitude, phase and frequency. 
 
The Ziarani algorithm demonstrates the following 
characteristics [18]: 
• Simple structure, 
• Low computational requirements, hence easily 

implemented in hardware and software, 
• High degree of noise immunity and robustness, 
• High speed, 
• Effectiveness in tracking large variations in 

parameters. 
Figure 5 illustrates a block diagram of the Ziarani 
Algorithm.  

 

 
Figure 5: Block diagram of the Ziarani 

Algorithm [18] 
 

Naidoo and Pillay [19] review the application of this 
algorithm for power systems applications and 
identify the following advantages: 
• Phase lock loop  is not required 
• Simple structure and easy to implement 
• No windowing of data required 
• Less processing power is required as compared 

to FFT and wavelets 
It has the following disadvantages: 
• Limited convergence speed  posing problems for 

processing of short duration events 
• The co-efficients have to be optimized for a 

particular application 
• Errors associated with the algorithm are not 

known and require investigation 

3.1.8 Forward Clarke Transform and Space 
Vector Definition 

The Clarke transform is commonly used in real-time 
motor control applications. It transforms a 3-phase 
system to an equivalent two phase representation. 
Gargoom et al. [20] identify its advantages as being 
able to analyze all three phases of a power system 
simultaneously as well as its simplicity and speed. 
The Clarke transform is commonly used for the 
analysis of transient disturbances in three-phase 

systems. It relates the phase-to-neutral voltages and 
component voltages through a matrix expression [9]. 
Aller et al. [21] demonstrate the derivation of the 
space vector where the first two components 
( ))(),( txtx βα  form the space vector and the third 

one ( ))(0 tx  representing the zero sequence voltage: 
 

 
 

The space vector of the Forward Clarke Transform is 
then represented as: 
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Gargoom et al. [20] utilise the mean and standard 
deviation of the space vector magnitude as features 
for event classification. 
 
3.2 Comparative Analysis of  Methods 

Perez et al. [17] discuss the comparative performance 
of the most commonly used techniques for detection 
and analysis of voltage events in power systems, 
namely: 
• RMS method, 
• Discrete Fourier Transform and  Short Time, 

Fourier Transform, 
• Kalman Filtering, 
• Wavelet Analysis. 

 
Their conclusions [17] are that RMS and STFT 
show limited performance for short duration and low 
magnitude voltage events. 
Wavelet analysis is deemed to provide the best 
performance in terms of detection and estimation of 
time-related parameters but has the drawback of 
requiring an additional method to discriminate 
between voltage events and other high frequency 
disturbances. 
Gargoom et al. [14] conduct a comparative study on 
signal processing tools for feature extraction 
purposes and Table 3 summarizes the performance 
of some signal processing techniques [14]. 
 

Table 3: Comparative analysis of   Techniques [14] 

 STFT Wavelet S -
Transform 

Park’s 
Vector 

Speed  Moderate Moderate Low High 
Sensitivity Low Moderate High High 
Practical 
Implementation 

Difficult Difficult Difficult Easy 

3-ph signals 
simultaneous 

No No No Yes 



4. SELECTION OF AN ANALYSIS METHOD 

The characteristics of a suitable feature extraction 
method to meet the analysis requirements of the dip 
segmentation method were identified in 2.5.   

The analysis of nonstationary signals is a 
requirement for detailed analysis of the transition 
segments and the associated segmentation of voltage 
dips. 

Another factor to be taken into consideration is the 
application of the tool, in particular whether it will 
be an online or offline analysis application and the 
ease of implementation. 

Based on the abovementioned criteria the tools 
identified for analysis and feature extraction are the 
Kalman filter and the method of Ziarani and Konrad.  
The Park's transform might also be suitable and 
some aspects of its use need to be examined further. 

5. CONCLUSION 

This paper has provided a review of voltage dip 
characterisation with the aim of selecting suitable 
signal processing tools for feature extraction  

Requirements for selection of suitable signal 
processing tools for feature extraction are discussed 
and signal processing tools reviewed and 
comparative studies of performance are presented.  

The Park's transform, Kalman filter and Ziarani and 
Konrad algorithm are selected as suitable feature 
extraction tools for further investigation and 
development, based on the characterisation 
requirements. 
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