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Abstract—In a stereo image sequence, finding feature
correspondences is normally done for every frame without
taking temporal information into account. Reusing previous
computations can add valuable information. A temporal
seeding technique is developed for reusing computed disparity
estimates on features in a stereo image sequence to constrain
the disparity search range. Features are detected on a left
image and their disparity estimates are computed using a
local-matching algorithm. The features are then tracked to
a successive left image of the sequence and by using the
previously calculated disparity estimates, the disparity search
range is constrained. Errors between the local-matching and
the temporal seeding algorithms are analysed. Results show
that although temporal seeding suffers from error propagation,
a decrease in computational time of approximately 20% is
obtained when it is applied on 87 frames of a stereo sequence.
Furthermore a confidence measure is used to select start-up
points for seeding and experiments are conducted on features
with different confidences.

I. INTRODUCTION

In a stereo image sequence, finding feature correspondences
is normally done for every pair of frames without taking
temporal information into account. Current imaging sensors
can acquire images at high frequencies resulting in small
movements between consecutive image frames. Since there are
small inter-frame movements, the frame-to-frame disparity
estimates do not change significantly. We explore using
previously computed disparity estimates to seed the matching
process of the current stereo image pair.

Most conventional stereo correspondence algorithms contain
fixed disparity search ranges by assuming the depth range
of the scene. This range stays constant throughout a stereo
image sequence. By decreasing the disparity search range the
efficiency of the matching process can be improved. This can
be seen in [1], where the probability of an incorrect stereo
match is given by:

PT ∝ P a + P b + P c,

where P a is the probability of mismatching a pair of features
when neither feature has its correct match detected in another

image, P b is the probability of mismatch when one feature
has had its correct match detected, and P c is the probability
of mismatch when both features have had their correct
matches found in the other image. The probabilities, P a, P b

and P c are all proportional to the mean number of candidate
matches and thus PT is proportional to the disparity search
range of the stereo correspondence algorithm. Therefore by
reducing the disparity search range, PT is reduced assuming
that the correct match remains in the reduced range.

A method of using temporal information in stereo image
sequences to decrease the disparity search range so as to
decrease the probability of a mismatch is developed. A local-
matching stereo correspondence algorithm is implemented
on KLT (Kanade Lucas Tomasi) features and the disparity
estimates obtained are used on the consecutive stereo image
frame to seed the matching process. Local-matching stereo
algorithms have a uniform structure. This allows the temporal
seeding method to be used across different variations of
these stereo algorithms. The method is expected to be at the
least as accurate as the local-matching algorithm at a lower
computational expense when using a small number of frames.

Errors in both the local-matching algorithm and the temporal
seeding algorithm are quantified. The algorithms are run on
87 frames of a dataset and temporal seeding is evaluated.

This paper is structured as follows. Section II covers
the related literature. Section III defines the problem to
be solved. Section IV discusses the feature matching and
detection process. The local-matching stereo correspondence
algorithm implemented is discussed in Section V. Section VI
discusses the temporal seeding process. Section VII discusses
the experiments and results and conclusions are made in
Section IX.

II. RELATED WORK

There have been successful implementations of enforcing
temporal constraints for depth estimation in successive stereo
image frames. The work in this chapter is directly related to
approaches that combine motion and stereo.



Algorithms such as [2]–[4] can be classified as pseudo-
temporal stereo vision algorithms. They aim to solve the
stereo correspondence problem for a wide baseline. The
input to such algorithms is a monocular sequence of images
produced by a camera undergoing controlled translating or
rotating motion. Stereo image pairs are produced by selecting
and pairing different images from the input sequence. The
algorithms initially start by finding correspondences in a
short baseline stereo pair and use these correspondences to
bootstrap the stereo correspondences of a wider baseline
stereo image pair. The propagation of disparity values from
one set of frames to the next helps to improve computational
efficiency and reliability of stereo matching.

The work in [5] and [6] also takes into account temporal
information to solve for depth from triangulation. These
methods extend support aggregation from 2D to 3D by
adding the temporal domain. These algorithms can be viewed
as exploiting temporal aggregation to increase matching
robustness.

The work in [7] uses previous disparity estimates by analyzing
their local neighbourhood to decrease the disparity search
range of the current stereo image frame. The computational
load and robustness of using temporal information are
demonstrated. Although this algorithm performs well, it
suffers from start-up problems. Research from [8] addressed
the start-up problem and was successfully used on a wide
baseline stereo sequence.

The ideas in this paper are similar to [7], but instead
of analyzing the local neighbourhood of the previous estimate
to decrease the search range, the search range is decreased
according to the shape of the correlation curve in the
successive image frame given an initial disparity estimate.

III. PROBLEM STATEMENT

The problem to be solved can be defined as follows.

The input is a set of calibrated and rectified stereo image
pairs, {Lt,Rt}Nt=0, each pair acquired at time t = 0, ..., N .
Lt and Rt denote the left and the right images taken at time
t. An image coordinate, xt = (ut, vt) ∈ F , represents a pixel
location of a detected feature in the set of features F at
row ut and column vt in the left image, while x′

t = (u′
t, v

′
t)

represents the corresponding pixel on the right image. If
d(a) is the disparity estimate of pixel a, then our goal is to
determine a disparity estimate d(xt+1) when given d(xt) as
a prior.

IV. FEATURE DETECTION AND MATCHING

A. KLT (Kanade-Lucas-Tomasi)

This section discusses the feature detector and tracker used
in determining and tracking the features F . The Kanade-
Lucas-Tomasi (KLT) feature tracker is based on the early

work by Lucas and Kanade (LK) on optical flow [9]. The
LK algorithm attempts to produce dense disparity estimates.
The method is easily applied to a subset of points in the
image and can be used as a sparse technique. Using the LK
algorithm in a sparse context is allowed by the fact that it
relies on local information extracted from some small window
surrounding the point of interest.

LK works on three assumptions:

• Brightness consistency
The appearance of a pixel does not change with time.
This means that the intensity of a pixel denoted as I(.)
is assumed to remain constant between image frames:
It(xt) = It+1(xt+1).

• Temporal persistence
The movement of the image frames is small, so a surface
patch changes slowly over time.

• Spatial coherence
Neighbouring pixels that belong to the same surface patch
have similar motion and project to nearby image points
on the image plane.

The KLT tracker [10] is a frame-by-frame temporal tracker
for a single video sequence which is applied at a set of corner
points that change throughout the tracking. Good features [11]
are selected by examining the minimum eigenvalue of each
2 × 2 gradient matrix. The features are then tracked using
a Newton-Raphson method of minimizing the differences
between two image patches. Figure 1 shows an image with
313 detected KLT features.

The features in F are found by using [11] and these
features are tracked on successive frames using the KLT
tracker in order to estimate xt ↔ xt+1.

Fig. 1. Features detected in the image. 313 KLT features are detected on
this image.



V. STEREO CORRESPONDENCE

Given an image pair that is calibrated and rectified,
{Lt,Rt}, a set of detected features F in the left image, and
corresponding pixels xt ↔ x′

t, the objective is to determine
d(xt).

A. Stereo algorithm

The stereo algorithm implemented uses Birchfield and
Tomasi’s (BT’s) sampling insensitive matching cost [12]. This
matching cost e(xt,x

′
t) is formulated as follows:

Il(x
′
t) =

1

2
(IR(x

′
t) + IR(u

′
t, v

′
t − 1))

is the linearly interpolated intensity to the left of pixel x′
t and,

analogously,

Ir(x
′
t) =

1

2
(IR(x

′
t) + IR(u

′
t, v

′
t + 1))

is to the right of pixel x′
t, then Imin(x

′
t) and Imax(x

′
t) are

computed as follows:

Imin(x
′
t) = min(Il(x

′
t), Ir(x

′
t), IR(x

′
t)),

Imax(x
′
t) = max(Il(x

′
t), Ir(x

′
t), IR(x

′
t)).

The matching cost is then computed as

e(xt,x
′
t) = max(0, IL(xt)− Imax(x

′
t), Imin(x

′
t)− IL(xt)).

(1)
A square window is used to aggregate the cost [13]. Further-
more, sub-pixel interpolation is performed for disparity refine-
ment [14]. From this point, the described stereo algorithm will
be called BT’s stereo algorithm.

VI. TEMPORAL SEEDING

The main contribution of this work lies in the way the
computed d(xt) is reused as a prior to determine d(xt+1).
In order to achieve the objective, some important assumptions
have to be made and justified.

A. Assumptions

The local structure of successive stereo disparity maps
does not change significantly. This means that one can
assume that the shape of the correlation curve, which is the
correlation of the error over the disparities, of a tracked
feature point at time t+1 does not change by much compared
with the feature point’s correlation curve at time t. This
assumption is made feasible because of the LK algorithm’s
three assumptions, as stated in Section IV-A. Figure 2 shows
an example where the assumption holds. The shapes and
positions of the two correlation curves are almost identical
despite the frame-to-frame movement.
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Fig. 2. Correlation curves for a feature point in F at time t and t+ 1.

B. Seeding

The disparity estimate d(xt) is used as an initial disparity
estimate for d(xt+1). The new disparity estimate is found
by the local minimum around the initial estimate. This local
minimum is then assumed to be the global minimum of the
correlation curve. A technique similar to gradient descent is
used to determine the local minimum. The gradients to the left
and to the right of d(xt) are determined. If the gradients on
both sides of d(xt) are negative, then we move a single step
towards the descending slope until the gradient changes the
sign from negative to positive. This signals the local minimum
around the initial point. A similar process is carried out if the
gradients on both sides of d(xt) are positive.

VII. EXPERIMENTS AND RESULTS

A. Ground truth

Since features are tracked along the left images of a stereo
sequence, one needs ground truth disparity estimates to evalu-
ate the implemented stereo correspondence algorithm and the
potential of temporal seeding. Ground truth is determined by
first using BT’s stereo algorithm on each feature point of a
stereo pair. The disparity estimates are then refined to sub-
pixel accuracy by using the LK optical flow method.

B. Experiments

In this section we evaluate temporal seeding. The dataset
used is the Microsoft i2i chairs dataset1 which consists of a
stereo video of an indoor scene with chairs and tables. Figure
3 shows a stereo image pair of the dataset.

The experiments carried out in this section are on 87
successive stereo image frames. In the first stereo pair, feature
points are detected and the disparity estimates of the features
are calculated with BT’s stereo algorithm. The disparity
search range used is [0, 20]. Features are then tracked on the
left images of the sequence and temporal seeding is applied
to determine the disparity estimates in the range of [0, 20] on

1http://research.microsoft.com/en-us/projects/i2i



(a) (b)

Fig. 3. First stereo image pair of the Microsoft i2i chairs dataset.

the successive stereo image pairs. To quantitatively evaluate
the results, the RMSE is computed as follows:

RMSE = 100×
√

1

Nf

∑
f∈F

(df − dg(f))2, (2)

where f is a detected feature point in the set F , Nf is
the number of detected feature points, df is the estimated
disparity of a feature, and dg is the ground truth disparity of
the detected feature.

The temporal seeding algorithm is initialised by the
disparity estimates of BT’s stereo algorithm on the first frame
of the image sequence. Temporal seeding is then performed
on the successive frames. Seed values for frame number k
are taken from frame number k − 1.

Figure 4 shows the number of features which were
successfully tracked along the stereo sequence. Features
which were not successfully tracked are replaced by new
features. Although some features are replaced, features which
lie close to the border of the image are removed. Further,
features with a low reliability of being tracked are also
removed. This causes the number of features to drop as the
number of frames increase.
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Fig. 4. Number of frames versus the number of features in temporal seeding.

Figure 5 shows the RMSE for every stereo frame in
the sequence. The results show that the error increases as

the number of frames increase. This means that temporal
seeding suffers from error propagation. The results also show
that the error propagation rate decreases as the number of
frames increase. This is caused by the fact that features
which cannot be tracked are replaced by new features. As
the sequence progresses, more features fall away because
parts of the scene fall out of the field of view of the camera.
Furthermore, the lighting of the scene changes because of
the change in viewpoint. Some of the features which fall
away are erroneous and are replaced with new features which
have not suffered from error propagation. The computational
time when using temporal seeding on the stereo sequence is
approximately 20% less than that of BT’s stereo algorithm.
The improvement in speed is achieved because the developed
temporal seeding approach does not always do the full
disparity search. It only searches for a local minimum around
the initial estimate. This is demonstrated in Figure 6. The
figure shows the average number of disparity values visited
by the temporal seeding algorithm for every image frame.
The average number of disparities visited are less than the
disparity range hence the speed improvement.
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Fig. 5. Number of frames versus RMSE in temporal seeding.

VIII. CONFIDENCE MEASURE IN TEMPORAL SEEDING

In the previous section, temporal seeding is applied on a
stereo image sequence. The startup disparities for temporal
seeding are calculated using a full disparity search on the
KLT features of the left image in the first stereo image frame.
In this section, the confidences of the detected features in
the first stereo image frame are determined. The features are
then selected according to their confidences and used as the
startup features. Temporal seeding is then applied and the
results are evaluated.

The confidence measure is calculated as a function of
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Fig. 6. Number of frames versus average disparities visited by the temporal
seeding algorithm.

(u, v, d), where (u, v) are the image coordinates and d
is the disparity. A typical correlation curve is shown in
Figure 7. Local-matching algorithms aim to find the disparity
that minimizes the error represented by this curve. Given
a disparity d, we propose computing the confidence of a
disparity estimate as follows:

Cd =
B(d)

dmax − dmin
. (3)

Here Cd is the confidence for a given disparity, B(d) is
the basin of convergence (refer to Figure 7) of the disparity
estimate d, and dmax − dmin is the disparity range. It is
expected that in textureless regions the correlation curve will
have multiple local minima with small B(d) values, and
since Cd is proportional to B(d) we expect low confidences.
A high confidence value would have few local minima in
the correlation curve and a fully confident disparity estimate
would arise where the local minimum is the global minimum
of the correlation curve.

The value of B(d) is determined by using an approach
similar to gradient ascent. Given a disparity estimate d, the
gradient to the right of d is expected to be positive and the
gradient to the left of d is expected to be negative. The
algorithm takes single steps on both sides of d until the sign
of the gradient changes. This represents the local maxima on
the left and on the right of d. The disparity range covered by
the two local maxima is defined as the basin of convergence
B(d).

The results of the experiments are shown below. Figure
8 shows the number of features which satisfy a particular
confidence. For the same reason as in Section VII-B, the
number of tracked features decreases as the number of frames
progresses. Also, the number of startup features are high for
low confidence values and low for high confidence values.
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Fig. 7. Correlation curve and the basin of convergence.

Figure 9 shows the RMSE for every frame when using
startup disparities with a particular confidence. The results
show that the shapes of the Figures 9(a)-9(e) are similar
meaning that the confidence measure is not removing enough
erroneous points in temporal seeding. The peak error becomes
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(a) Number of features with Cd ≥ 0
20

detected on the stereo image sequence
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(b) Number of features with Cd ≥ 5
20

detected on the stereo image sequence
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(c) Number of features with Cd ≥ 10
20

detected on the stereo image sequence
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(d) Number of features with Cd ≥ 15
20

detected on the stereo image sequence
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(e) Number of features with Cd ≥ 20
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Fig. 8. Number of features detected on the stereo image sequence which
have a chosen confidence.



higher as Cd increases. This is caused by the fact that features
with a higher Cd value are tracked for longer in the image
sequence. This means the error is propagated longer in the
sequence leading to a higher peak error. Figure 9(e) appears
to have more noise compared to the other plots. This is due
to the low number of features which have a confidence value
of 1.
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(a) RMSE for features with Cd ≥
0
20

for the stereo image sequence
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(b) RMSE for features with Cd ≥
5
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for the stereo image sequence

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

number of frames

R
M

S
E

(c) RMSE for features with Cd ≥
10
20

for the stereo image sequence
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(d) RMSE for features with Cd ≥
15
20

for the stereo image sequence
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Fig. 9. RMSE versus the number of frames for different confidence values.

IX. CONCLUSION

A method of reusing computed disparity estimates of
KLT features in a stereo image sequence is presented. We
have shown that using temporal seeding on 87 frames of a
stereo sequence produces a computational improvement of
approximately 20%. However, temporal seeding suffers from
error propagation.

Further experiments involve using a confidence measure
in temporal seeding. The confidence measure is then used
to select different start-up features for temporal seeding in
the attempt of limiting error propagation. The results show
that the confidence measure does not succeed in removing
features which produce high errors.
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