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Abstract—We present a confidence measure applied to individ-
ual disparity estimates in local-matching stereo correspondence
algorithms. It aims at identifying textureless areas where most
local-matching algorithms fail. The confidence measure works by
analyzing the correlation curve produced during the matching
process. We test the confidence measure by developing an easily
parallelized local-matching algorithm. We use our confidence
measure to filter out unreliable disparity estimates. Using the
widely used Middlebury dataset and our own evaluation scheme,
our results show that the confidence measure significantly de-
creases the disparity estimate errors at a low computational
overhead.

I. INTRODUCTION

Stereo vision is a very actively researched topic in the
computer vision community. In robotic systems, stereo vision
provides a low-cost alternative for range imaging compared
to expensive laser range finders for applications such as
3D reconstruction, obstacle avoidance, etc. The major issue
in such a system is the correspondence problem, which is:
given two or more images of the same scene from different
viewpoints, find which pixels correspond and by how much
the pixel in one view is translated relative to a corresponding
pixel in another view. A number of solutions have been
produced to the extent that an online evaluation has been
developed [1].

Solutions for the stereo correspondence problem consist
of complex modules such as plane-fitting, edge-preserving
smoothing, image segmentation etc. Among these solutions
are local-matching algorithms which can be easily parallelized
for real time applications. Although these algorithms are
applicable in real-time systems, they generally produce
more errors compared to other more complex non-real time
approaches.

We present a method of assigning a confidence to a disparity
estimate for local-matching algorithms. Our approach is
expected to give low confidences to disparity estimates in
textureless regions, where many local-matching algorithms
fail. While our approach is similar to a number of previously
developed confidence measures in that the confidence of a
disparity estimate is a by-product of the matching process,

our analysis focuses on the base of convergence (refer to
figure 3) of a disparity estimate.

To evaluate our confidence measure, we implement a
local-matching algorithm. We expect our confidence measure
to be applicable across the different variations of these
algorithms because of their uniform structure of local-
matching algorithms . We run our algorithm on the widely
used Middlebury dataset [1] in order to evaluate the
performance of our confidence measure using our own
evaluation scheme.

The remainder of the paper is structured as follows.
Section II briefly covers the related literature. Section III
discusses the local-matching algorithm implemented. Section
IV discusses our confidence measure and how we use the
measure for disparity refinement. Section V discusses our
evaluation methodology and the results of our experiments.
The paper is concluded in Section VI.

II. RELATED WORK

In stereo vision research, there has been several success-
ful approaches in representing the confidence of a disparity
estimate. The left-right consistency constraint [2]–[6] has
been traditionally used to characterize pixel ambiguity. The
constraint checks the left-image reference disparity estimate
and compares the estimate with the inverse mapping of the
right-image reference disparity estimate. This approach has
been successful in detecting occluded regions. There have
been approaches which analyze the matching score of the
disparity estimate [7], [8]. The confidence of a pixel is based
on the magnitude of the similarity value between the pixel
in the reference image and a matching pixel in the target
image. Other approaches analyze the curvature of the corre-
lation curve [9], [10] and assign low confidence to disparity
estimates resulting from a flat correlation curve. Approaches
such as [11], [12] estimate the confidence of pixels with two
similar match candidates. Research has also been conducted
in determining pixel confidence based on image entropy [13],
[14]. Low confidence scores are assigned to low entropy points
in the reference image. Recently, a new approach has been



developed which extrapolates confidence a posteriori from an
initial, given, possibly noisy disparity estimate [15].

III. STEREO ALGORITHM

According to [16], stereo vision algorithms generally per-
form the following steps:

1) matching cost computation, where a matching cost used
to quantify pixel similarity is formulated;

2) cost aggregation, where a support region is defined to
spatially aggregate the matching cost;

3) disparity computation, where the best disparity hypoth-
esis for each pixel is computed to minimize a cost
function and

4) disparity refinement, where the computed disparity maps
are post-processed to remove mismatches or to produce
sub-pixel disparity.

We are interested in local-matching algorithms which gener-
ally perform the steps 1, 2 and 3. We include step 4 as our
confidence measure. Our interest in local-matching algorithms
is motivated by:
• firstly, they can be easily parallelized which allows them

to be implemented on graphics processing units or field
programmable gate arrays for real-time computations,

• secondly, they are generally used as an initial estimate
for a number of the state of the art algorithms and

• thirdly, their uniform structure shown in Algorithm 1,
allows our confidence formulation to be used across the
different variations of these algorithms.

However, local-matching algorithms generally fail because of
lack of texture in an image and occluded regions.

Algorithm 1 Stereo algorithm
INPUT: Stereo images, window size, disparity range.
OUTPUT: Disparity map, confidence map.

for each pixel in the left frame do
set support region around the pixel (left frame)
set search window in the right frame
for each pixel in the search window (right frame) do

set correlation window around the pixel
correlate support region with correlation window

end for
find best match
calculate disparity
calculate disparity confidence

end for

It can easily be seen that local matching algorithms generally
differ in steps 1 and 2, matching cost computation and cost
aggregation. For a comprehensive study of matching costs
and cost aggregation, the reader is referred to [17] and [18].

For our purposes, we use Birchfield and Tomasi’s sampling
insensitive [19] matching cost. We also perform the left-right
consistency check to detect occluded regions and filter them

Fig. 1. Tsukuba image pair at the top and it’s ground truth at the bottom
with the left image as reference

Fig. 2. Computed disparity map of the Tsukuba image pair. Close objects
are bright while further objects are darker

out. Figure 1 shows Tsukuba image pair and it’s ground
truth. The resulting disparity map from our algorithm for the
Tsukuba image pair with a 5x5 aggregation window and 15
disparities followed by a 5x5 median filter is shown in figure
2. It should be noted that the algorithm implemented is to
be used as a testbed for our confidence measure and is not
meant to be compared with the state of the art.

IV. CONFIDENCE MEASURE

Our confidence measure is calculated as a function of
x, y, d, where (x, y) are the image coordinates and d the
disparity. A typical correlation curve is shown in figure 3. By
analyzing the base of convergence, B of the disparity estimate,
a confidence of the estimate can be inferred. Given a disparity,



d, the confidence of a disparity estimate can be computed as
follows:

C(d) =
B

dmax − dmin

C(d) is the confidence for a given disparity, B is the base of
convergence of the disparity estimate d, and dmax − dmin is
the disparity range. It is expected that in textureless regions,
the correlation curve will have multiple local minima with
small B values, therefore since C(d) is proportional to
B, we expect low confidences. A high confidence value
would have few local minima in the correlation curve
and a fully confident disparity estimate would arise where
the local minima is the global minima of the correlation curve.

Our algorithm uses gradient ascent to determine B. Given
a disparity estimate, d, we perform gradient ascent on both
sides of the estimate and determine the two local maxima.
The number of disparities covered by the two local maxima
are defined as the base of convergence, B.

Fig. 3. Correlation curve and the base of convergence

A. Disparity refinement

After computing confidences for all our disparity estimates,
we select a threshold, T , to create a mask of acceptable
and unacceptable disparity estimates. Acceptable disparity
estimates are defined as estimates satisfying, C(d) > T . By
choosing, T = 2, the refined disparity map is shown in figure
4. One can visually see by comparing figure 2 and figure 4 that
most of the noisy estimates arising from the local-matching
algorithm are filtered out successfully.

V. EXPERIMENTS

The Middlebury stereo benchmark provides a testbed to
quantitatively evaluate stereo algorithms. Although the testbed
is widely used in the computer vision community, it requires
a dense disparity map. Generally, algorithms which perform

Fig. 4. Refined disparity map for the Tsukuba image pair with T = 2

disparity refinement would also include a hole filling step.
Our algorithm does not perform hole filling because of the
errors it might introduce, which leaves a sparse disparity
map. Evaluating our sparse disparity map on the Middlebury
stereo benchmark would not be sufficient because most errors
would arise from the filtered out disparities. As a result, we
use our own evaluation scheme. We used Matlab for our
implementation.

We classify pixels as containing no information, unreliable
information or good information. We define occluded pixels
as containing no information, pixels with C(d) ≤ T as
containing unreliable information and the rest of the pixels as
good information. In our evaluation, we only consider pixels
containing good information.

We calculate the root mean square error (RMSE) as
follows:

RMSE = 100×

√√√√ 1
Np

∑
(x,y)∈p

(d(x, y)− dg(x, y))2,

where, p is the set of all pixels containing good information,
NP is the number of pixels containing good information,
d(x, y) is the estimated disparity at pixel (x, y) and dg(x, y)
is the ground truth disparity at pixel (x, y).

Included in our evaluation is the percentage computational
overhead for a chosen value of T . We include this metric
instead of actual time in seconds because the actual time
depends on the processor used to carry out the experiments.
Percentage computational overhead on the other hand is
independent on the processing power.

The Middlebury dataset is used for our evaluation. The
results for the Middlebury dataset on the different image
pairs with T = 0 are shown in Table I while results with an



TABLE I

Image pair Window size Disparities T RMSE
Tsukuba 5 15 0 7.56
Venus 5 19 0 29.84
Teddy 9 59 0 37.43
Cones 9 59 0 30.13

TABLE II

Image pair Window size T RMSE Overhead(%)
Tsukuba 5 2 6.56 2.33

Venus 5 4 21.94 18.35
Teddy 9 2 32.79 19.23
Cones 9 6 23.38 17.60

optimal value of T are shown in Table II.

In our experiments, it was noted that the RMSE starts
increasing after a certain value of T for a selected window
size. This is due to the errors introduced by the window size.
Local matching stereo algorithms assume constant disparity
throughout the aggregation window, therefore errors known
as the ”fattening effect” arise. Also, since the images have
pixel resolution, a window size greater than a pixel affects the
resolution of our disparity estimates. Errors are introduced
where the image details are smaller than the window size.
Since our algorithm does not filter out these errors, they are
fixed with a changing value of T . The larger the value of T ,
the smaller the value of Np while the errors remain fixed. A
plot showing the relationship between T and Np with a 5x5
window size for the Tsukuba image pair is shown in figure 5.

Fig. 5. Plot of number of pixels Np vs Threshold (T ) with a 5x5 window
size for the Tsukuba image pair

To visually show the effect of the window size on our
evaluation, figure 6 shows a plot of T vs RMSE for
varying window sizes. Different window sizes tend to shift

the curve up or down. As the window size increases, the
curve shifts downwards until a point where a larger window
size introduces more errors causing the curve to shift upwards.

Fig. 6. Plot of Threshold (T ) vs RMSE for varying window sizes

VI. CONCLUSIONS AND FUTURE WORK

We presented a confidence measure to detect textureless
regions for local-matching algorithms. The effectiveness of
our approach was demonstrated by implementing a local-
matching algorithm and filtering unreliable depth estimates.
Our quantitative evaluation scheme demonstrated that our
simple confidence measure decreases the disparity estimate
errors at a fraction of time complexity.

We plan to use the developed confidence measure to
address the problem of temporal stereo which entails using
previously computed disparity maps to seed new disparity
maps. The confidence measure would aid in identifying good
points to seed successive disparity estimates in the hopes of
decreasing computation time in a stereo video sequence.
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