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Abstract
This paper presents another approach to segmenting a scene
of rocks on a conveyor belt for the purposes of measuring
rock size. Rock size estimation instruments are used to
monitor, optimize and control milling and crushing in the
mining industry. We propose a joint analysis of range and
intensity images of rocks where sections extracted from
range images are used to guide a Model-driven intensity
image segmentation process. The models contain rock
shape and edge probability information which can be used
to extract intensity edges of relevance in terms of orienta-
tion and position. Conventional polynomial fitting is used
to extract the underlying rock shape as a final segmenta-
tion. Preliminary results on a small laboratory data set us-
ing qualitative and quantitative measures of performance
are promising.

1. Introduction

A rock-sizing instrument designed to operate in the harsh
mining environment has benefits of monitoring, optimiza-
tion and control of blasting and comminution. Image pro-
cessing in particular, has been widely accepted as the anal-
ysis method of choice for the estimation of rock-size be-
cause of: the non-intrusive nature of the measurement pro-
cess; the capability of measuring continuously and in real
time; the repeatability of measurements given the same
scene and lighting conditions; and the absence of moving
mechanical parts which implies little or no maintenance.

Intensity image analysis, in particular, has been a re-
search area of focus for many of the recent academic [2,
3, 4] and operational [1, 5, 6] systems, mainly because
of financial viability coupled with the sensitivity of the
imaging sensor to shadows which are formed around the
individual particles. These shadows are detected and com-
pleted as rock outlines during rock scene segmentation.
However, limitations of intensity sensors are well docu-
mented [7, 3]: the loss of a dimension due to the projective
nature of the sensor; and the loss of small particles due to
the limitation in the sensor’s resolution, etc. These limita-

tions introduce errors into the measurement process which
are further increased by errors that can be attributed to the
environment under imaging: poor lighting; color density
and texture variations.

Lighting conditions have been controlled through the
elimination of natural lighting and proper design of syn-
thetic lighting [3]. We present a methodology that avoids
problems associated with texture and color density varia-
tions during rock edge extraction. The methodology uses
range sections as models or a priori knowledge for model-
based intensity edge detection. Experience and previous
work [3] has shown that the human visual system (HVS) is
more than capable of rock-scene segmentation and there-
fore serves as an inspiration to the adopted methodology.
The HVS is known to use a priori knowledge or templates
as part of object identification and recognition. In this
work, rock sections are extracted from a range image as
a pre-attentive process that forms models in memory. The
information of interest from a model in the form of bound-
ary shape and edge probability is used to guide intensity
image segmentation. In order to obtain smooth and con-
tinuous shapes of rock boundaries, a statistical analysis
of the detected edge pattern is performed. The statistical
analysis involves outlier removal and polynomial curve
fitting.

The rest of the paper is organized as follows: the ex-
traction of range sections from a range image is described
in section 2; template-based edge detection is presented in
sections 3; Results of the work are presented in section 4;
and conclusions are drawn in section 5.

2. Extraction of Range Sections

Segmentation of range data is an important part of range
image perception and understanding. The general prob-
lem of range image segmentation is that of partitioning the
range image into disjoint surfaces representing individual
objects or a single object. The problem has seen many so-
lutions such as the HK map iterative region growing[10],
the effective jump-diffusion method[11], scan-line group-



ing [14], methods using mathematical morphology opera-
tors [12, 13] and others. In this work, the objective is to
extract rock sections from a range image as they contain
shape and edge probability information.

In [8, 9, 14], intensity and range data are fused in var-
ious ways to improve scene segmentation for various pur-
poses. In this work, range segmentations are used to im-
prove intensity image segmentation, see section 3. We ex-
tract range sections through a rock model extraction pro-
cess, which is based on morphological operators as shown
in figure 1. Specifically, gray-scale reconstruction, water-
shed and distance transforms are used, as shown in figure
1. In essence, the gray-scale reconstruction extracts the
smallest sections as markers which are used for recover-
ing optimum sections through a watershed process.

The first watershed is used to estimate a range thresh-
old that separates foreground and background sections based
on a discrepancy between trough and surface range values.
The second watershed combined with the distance trans-
form spatially splits connected sections that result from
the previous process. Due to the nature of the distance
transform, connected sections will have cone shaped struc-
tures whose peaks are centered at the centroids of the sec-
tions with local minima or saddle points between these
peaks. This allows for a watershed transform to create
boundaries at the saddle points and hence splitting con-
nected sections.

Figure 1: A block diagram representation of rock model
extraction.

3. Model-driven edge detection

Perception and understanding of intensity data often re-
quires image segmentation. The segmentation of intensity
rock-scenes can be difficult without a priori knowledge
about rocks because of noise, texture and color density
variations on rock surfaces. Crida[3] used elliptical mod-
els of rocks as a priori knowledge for focused intensity
edge detection. He used elliptical probability masks and
edge orientations to limit the search for edge pixels. In

Figure 2: Intensity, range and rock sections

this work, a similar approach is taken, except rock sec-
tions from a range image are used to produce probability
masks and edge orientations for rock template-based edge
detection. The edge detection is local by nature and there-
fore focuses attention to a predefined region-of-interest.

Figure 3: A block diagram representation of focused in-
tensity edge detection.

Once a rock is identified and sectioned in a range im-
age, the position and size of the sectional area is used
to define a window around the corresponding intensity
rock. As shown in figure 3, the boundary orientation of
the section is used to perform directed edge detection,
where edge templates are effectively aligned with the seg-
ments of the boundary. The edge probability, defined as
the marginal band around the boundary that is most likely
to contain actual intensity edges, is used to remove spu-
rious edge responses through a masking operation. The
result is optimized through a search for maximum edge re-
sponses along each radial line, outlier removal and curve
fitting to obtain a continuous rock boundary.

3.1. Edge detection, masking and optimization

The intensity rock is subjected to a non-linear edge detec-
tion method that computes edge-responses based on a [3-



by-3] kernel matrix whose elements depend on the pixel
position and orientation of the boundary model at that
point. The practical implementation involves predefining
a set of possible kernels for a number of arc intervals of
a circle. Each arc interval is assigned a specific kernel
matrix.

The probability mask is used to spatially eliminate spu-
rious edge responses. Its’ creation involves a dilation of
the sections boundary by predefined amount, distance trans-
formation and normalization. This process assigns high
probabilities to pixels on the central path of the marginal
band. The masking is achieved by multiplying the edge
response with a probability mask to produce a masked re-
sponse with less spurious pixels. The masked response
is then optimized by searching for pixels with maximum
edge responses. Figure 4 shows input intensity, edge re-
sponse, probability mask, masked response and optimized
response sub-images.

Figure 4: Image data: intensity, boundary model, prob-
ability mask, edge response, masked response and opti-
mized response

3.2. Rock shape extraction

It is desirable to have a smooth and continuous curve to
model the set of detected rock pixels. In this work, the de-
tected pixels are transformed from an image to an angular-
series representation. The independent variable becomes
angle in radians and the dependent variable is the radial
distance from the center of the section. The angles range
from zero to2π radians and the distance signal wraps
around at the zero and2π radians interface. A circle of
radiusr in an image becomes a DC signal ofr volts in
the angular-series representation. An ellipse becomes an
approximately sinusoidal signal with a DC offset equal
to the average of the principal components and amplitude
equal to the difference in principal components, as shown
in figure 5.

In general, however, ore can consist of particles with
sharp and pointed edges producing irregular and complex
angular-series. We use anN th order least squares polyno-

Figure 5: A sinusoidal signal as an approximation to an
elliptical shape.

mial as a first approximation to the angular-series points
and hence extract the underlying shape of the projected
rock. The least squares formulation determines coeffi-
cientsc = [cN , cN−1, cN−2, ..., c1]T from the general vec-
tor equationy = Ac as being(AT A)−1AT . This is known
as the pseudo-inverse of matrixA. A single row of the ma-
trix A has the form[xNxN−1xN−2...1]. Least squares is
known to perform well provided that there is an effective
pre-processing for removing outliers in the data. Because
it is not possible to completely remove outliers, it maybe
necessary to investigate other curve fitting methods such
as Radial Basis functions and robust estimation methods
which are known to be less sensitive to outliers.

4. Methodology

The system’s performance is evaluated in terms of a vi-
sual measure of error from images coupled with numer-
ical errors between automatically extracted rock-shapes
and hand segmented sub-images. Numerical differences
in enclosed areas between the segmentations of the sys-
tem and the human visual system are computed by image
subtraction of the system output from the hand segmented
images. The overall error is divided into over-estimation
and under-estimation errors. The percentage error is com-
puted relative to the HVS segmentations. Table 1 shows
the user input parameter set that is used during the exper-
iments and figure 2 is the input data-set to be used by the
focused intensity segmentation algorithm.

5. Results

This section presents results on a data-set of 8 sub-images.
The results are divided into visual and numerical cate-
gories based on performances with settings of table 1. The
visual data in the form of the input intensity image, ex-
tracted model, angular series and segmented rock are shown



Table 1:The user-input parameter set

Parameter value
Polynomial orders 11 and 15

Probability mask width 60% of radial distance
2-tail outlier search regions 50% of range

Intensity Gaussian filter[size, σ] [9, 0.5]

in figures 6 to 13. Polynomial fitting results with polyno-
mials of order 15 and 11 are shown. The results show, as
predicted, that the order 11 polynomial imposes smooth-
ness on the model, while the15th order can model the in-
tricate complexities of rock shapes. The15th order poly-
nomial is used for comparisons to hand segmented sub-
images.

Table 2:Segmentation error with respect to HVS segmen-
tation results

Image under-estimation over-estimation overall
image 1 1.85% 4.09% 5.93%
image 2 9.95% 2.96% 12.9%
image 3 2.04% 6.55% 8.59%
image 4 24.81% 0.24% 25.5%
image 5 1.07% 3.17% 4.24%
image 6 18.83% 1.82% 20.65%
image 7 0.92% 4.92% 5.84%
image 8 5.14% 1.66% 6.80%

Table 2 shows the numerical results of a comparison to
hand segmented sub-images in terms of over-estimation,
under-estimation and overall errors. Results show that the
worst performance is produced on image 4 of figure 9,
with an overall pixel error 25.5% and an under-estimation
component of 24.81%. This image appears not to have
clear indications of rock edges of interest. The system
performs best on image 5 of figure 10, with a minimum
overall error of 4.24%. This image appears to have very
good edge information about the rock of interest. Image 3
of figure 8 exposes the effect of the sensitivity to outliers
of the least squares method. As a result the overall error of
8.59% has an over-estimation component of 6.55%. Even
though, the overall average error of 11.31% is promising,
it is not a reliable measure of the system’s performance as
the number of images is not sufficient.

6. Conclusions

Based on the above findings and results, the following
conclusions can be drawn.

• A methodology for rock-scene segmentation that com-
bines intensity and range image analysis to reduce
the effects of texture and color density variations is
presented.

• Post-processing in the form of outlier rejection and
angular-series analysis ensures that the underlying
rock-shape is extracted with good boundary accu-
racy. However, the least squares estimator of the
fitting is sensitive to outliers and therefore other es-
timators must be investigated.

• A quantitative performance metric and more data
are required for a more convincing performance eval-
uation.

Figure 6: Rock image 1 results

Figure 7: Rock image 2 results
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Figure 8: Rock image 3 results

Figure 9: Rock image 4 results.

Figure 10: Rock image 5 results.

Figure 11: Rock image 6 results.

Figure 12: Rock image 7 results.

Figure 13: Rock image 8 results.
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