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Abstract. This paper presents a methodology for the automatic seg-
mentation of rock-scenes using a combination of range and intensity vi-
sion. A major problem in rock scene segmentation is the effect of noise
in the form of surface texture and color density variations, which causes
spurious segmentations. We show that these problems can be avoided
through pre-attentive range image segmentation followed by focused at-
tention to edges. The segmentation process is inspired by the Human
Visual System’s operation of using a priori knowledge from pre-attentive
vision for focused attention detail. The result is good rock detection and
boundary accuracy that can be attributed to independence of range data
to texture and color density variations, and knowledge driven intensity
edge detection respectively. Preliminary results on a limited image data-
set are promising.
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1 Introduction

An instrument for measuring rock fragmentation is invaluable to the mining
and mineral processing industries where it can be used to monitor, optimize
and control blasting and communition. Image processing in particular, has been
widely accepted as the analysis method of choice for the estimation of rock-size
because of: the non-intrusive nature of the measurement process; the capability of
measuring continuously and in real time; the repeatability of measurements given
the same scene and lighting conditions; and the absence of moving mechanical
parts which implies little or no maintenance.

Intensity image analysis, in particular, has been a research area of focus for
many of the recent academic [1], [2], [3] and operational [4], [5], [6] systems,



mainly because the imaging sensor is sensitive to shadows which are formed
around the individual particles. These shadows are detected and completed as
rock outlines during rock scene segmentation. However, limitations of intensity
sensors are well documented [7], [2]: the loss of a dimension due to the projective
nature of the sensor; and the loss of small particles due to the limitation in the
sensors resolution, etc. These limitations introduce errors into the measurement
process which are further increased by errors that can be attributed to the
environment under imaging: poor lighting; color density and texture variations.

Lighting conditions can be controlled through the elimination of natural light-
ing and proper design of synthetic lighting [2]. Color density and texture vari-
ations define a rock-scene in intensity but do not necessarily correlate to range
image data except perhaps at the edges of rocks. High quality range images of
rock-scenes have been segmented using 3D morphological techniques [8] for the
purposes of rock-size estimation. However, the processing that is required to
produce such high quality data inhibits the practical implementation of such a
system in a real plant. Consequently, rapidly generated range imagery of suffi-
cient quality can be complemented with corresponding intensity in a multisensor
fusion framework.

A review of current trends and future directions in multisensor integration
and fusion is presented in [9], where a distinction between multisensor inte-
gration and fusion is made. Multisensor Integration is viewed as the general
connenctivity of sensors that produce information at system architecture and
control level. Fusion, on the other hand, is viewed as the process of combining
multisensory information using statistical or mathematical methods. Multisen-
sor integration of infrared and visual sensors has been used for human form
detection[10]. Range and intensity images have been fused for mobile robot lo-
calization in robotics[11] and deformed object identification and bin picking in
materials handling[12]. Range maps have been fused with intensity edge maps
to segment noisy range images [13].

We present a methodology that combines the analysis of range and intensity
images to address the problem of texture and color density variations during
rock edge extraction. Experience and previous work [2] has shown that the hu-
man visual system (HVS) is more than capable of rock-scene segmentation and
therefore serves as a platform upon which the image analysis is based. Initially,
pre-attentive range vision in the form of extracting preliminary rock boundaries
from a range image is executed. The boundary information is eventually used
as a priori knowledge for focused attention to intensity edges. A description of
the pre-attentive range segmentation algorithm is presented in section 2; section
3 describes the focused intensity edge detection algorithm; a methodology for
performance evaluation is presented in section 4; Results of the experiments are
presented in section 5; and conclusions are drawn in section 6.



2 Pre-attentive Range Vision

Segmentation of range data is an important part of range image perception
and understanding. The general problem of range image segmentation is that
of partitioning the range image into disjoint surfaces representing individual
objects or a single object. In this work, the former condition is encountered,
where each surface represents a single rock in the image. The problem has seen
many solutions such as the HK map iterative region growing [14], the effective
jump-diffusion method[15], scan-line grouping [13], methods using morphological
operators [16], [8] and others. In [13], intensity data in the form of Intensity Edge
Maps (IEM) are fused with range data to improve range segmentation. In this
work, range segmentations are used to improve intensity image segmentation,
see section 2.2. We use a global range segmentation technique referred to as rock
model extraction, which is based on morphological operators. Specifically, the
watershed and distance transforms are used, as shown in figure 1.

Fig. 1. A block diagram representation of rock model extraction.

The processing includes: the estimation of background and foreground range
values for range value thresholding to produce a binary image; connected bi-
nary models are disconnected using a combination of distance and watershed
transforms. As can be seen in figure 2 that the watershed is executed twice for
a single range image. The first watershed is used to estimate a range threshold
that separates foreground and background range values based on a discrepancy
between trough and surface range values. The second watershed combined with
the distance transform spatially splits connected binary models that result from
the previous process. The distance transform assigns a value for each foreground
pixel that is equal to its distance from the background. Consequently, connected
binary models will have cone shaped structures whose peaks are centered at the
centroids of the models with local minima or saddle points between these peaks.
This allows for a watershed transform to create boundaries at the saddle points
and hence splitting connected models.



3 Focused Intensity Vision

Perception and understanding of intensity data often requires image segmenta-
tion. The segmentation of intensity rock-scenes can be difficult without a priori
knowledge about rocks because of noise, texture and color density variations on
rock surfaces. Crida[2] used elliptical models of rocks as a priori knowledge for
focused intensity edge detection. He used elliptical probability masks and edge
orientations to limit the search for edge pixels. In this work, a similar approach
is taken, except a shape model from a range image is used for producing prob-
ability masks and edge orientations as shown in figure 2. The process is local
by nature and therefore focuses attention to a predefined region-of-interest. Key
processing operations in the form of rock edge detection, probability masking
and optimization are described in the next section.

Fig. 2. A block diagram representation of focused intensity edge detection.

3.1 Edge Detection, Masking and Optimization

The intensity sub-image is subjected to a directional edge detection process
that computes edge-responses based on a variable [3-by-3] convolution kernel
whose elements depend on the pixel position and orientation of the boundary
model at that point. The practical implementation involves predefining a set
of possible kernels for a number of arc intervals of a circle which defines the
orientation of edges to be detected. The radial convolutions produce noisy edge
responses in areas of mismatches between the kernel orientations and edges. We
use probability masks to spatially limit the search area of edges of interest. The
masks are created by a dilation of boundary models, distance transformation and
normalization. The masking is achieved by multiplying the edge response with
the probability mask to remove interior texture and color density noise effects.
The masked response is then optimized to narrow edge traces through a radial



Fig. 3. Image data: intensity, boundary model, probability mask, edge response,
masked response and optimized response.

search for pixels with maximum edge responses. Figure 3 shows input intensity,
edge response, probability mask, masked response and optimized response sub-
images.

3.2 Rock shape extraction

The objective of this stage is to fit the optimized response by a smooth boundary
to extract the underlying rock shape. This involves a transformation from an
image to an angular-series representation of radial distances. The independent
variable becomes angle in radians. The angles range from zero to 2π radians
and the distance signal wraps around at the zero and 2π radians interface. A
circle of radius r in an image becomes a DC signal of r volts in the angular-series
representation. An ellipse becomes an approximately sinusoidal signal with a DC
offset equal to the average of the principal components and amplitude equal to
the difference in principal components, as shown in figure 4.

In general, however, ore can consists particles with sharp and pointed edges
producing irregular and complex angular-series. We use an N th order least
squares polynomial as a first approximation of the angular-series points and
hence extract the underlying shape of the projected rock. The least squares
formulation determines coefficients

c = [cN , cN−1, cN−2, ..., c1]T , (1)

from the general vector equation

y = Ac (2)

as being (AT A)−1AT . This is known as the pseudo-inverse of matrix A. A
single row of the matrix A has the form [xNxN−1xN−2...1]. The increase in the



Fig. 4. A sinusoidal signal as an approximation to an elliptical shape.

order of the polynomial will vary the segmentations from simple to complicated
models. Least squares is known to perform well provided that there is an effective
pre-processing for removing outliers in the data. Because it is not possible to
completely remove outliers, it maybe necessary to investigate other curve fitting
methods such as Radial Basis functions and robust estimation methods which
are known to be less sensitive to outliers.

4 Methodology

A laboratory data set in the form of a calibrated stereo pair of consecutive frames
of an intensity rock-scene is used to generate a range image using dense stereo
reconstruction [17],[18]. Pre-attentive segmentation of the range image, as de-
scribed in section 2, is applied to produce boundary models, which are used to
automatically select image windows of corresponding intensity rocks. Focused in-
tensity segmentation is achieved through using variable edge orientation kernels
and probability masks from the boundary models.

Table 1. The user-input parameter set

Parameter value

Polynomial orders 11 and 15

Probability mask width 60% of radial distance

2-tail outlier search regions 50% of range

Intensity Gaussian filter [size, σ] [9, 0.5]

The system’s performance is evaluated in terms of a visual measure of er-
ror from images coupled with numerical errors between automatically extracted
rock-shapes and hand segmented sub-images. Numerical differences in enclosed



Fig. 5. Experimental data set: the range image and the corresponding reference inten-
sity image overlaid with boundary models

areas between the segmentations of the system and the human visual system are
computed by image subtraction of the system output from the hand segmented
images. The percentage error is computed relative to the HVS segmentations.
Table 1 shows the user input parameter set that is used during the experiments
and figure 5 is the input data-set to be used by the focused intensity segmenta-
tion algorithm.

5 Results

This section presents results on a data-set of 8 sub-images. The results are di-
vided into visual and numerical categories based on performances with settings
of table 1. The visual data in the form of the input intensity image, extracted
model, angular series and segmented rock are shown in figures 6 to 9. Polynomial
fitting results with polynomials of order 15 and 11 are shown. The results show,
as predicted, that the order 11 polynomial imposes smoothness on the model,
while the 15th order can model the intricate complexities of rock shapes. The
15th order polynomial is used for comparisons to hand segmented sub-images.

Table 2 shows the numerical results of a comparison to hand segmented sub-
images in terms of over-estimation, under-estimation and overall errors. Results
show that the worst performance is produced on image 4 of figure 7, with an
overall pixel error 25.5% and an under-estimation component of 24.81%. This
image appears not to have clear indications of rock edges of interest. The system
performs best on image 5 of figure 8, with a minimum overall error of 4.24%. This
image appears to have very good edge information about the rock of interest.
Sub-image 3 of figure 7 shows the effect of the sensitivity to outliers of the least
squares method. As a result the overall error of 8.59% has an over-estimation
component of 6.55%.

These are preliminary results and therefore it is not reasonable to specify av-
erages and standard deviations as the number of image samples is not sufficient.



Fig. 6. Rock sub-images 1 and 2 with corresponding results.

Fig. 7. Rock sub-images 3 and 4 with corresponding results.

Fig. 8. Rock sub-images 5 and 6 with correpsonding results.



Table 2. Segmentation error with respect to HVS segmentation results

Image number under-estimation error over-estimation error overall error

image 1 1.85% 4.09% 5.93%

image 2 9.95% 2.96% 12.9%

image 3 2.04% 6.55% 8.59%

image 4 24.81% 0.24% 25.5%

image 5 1.07% 3.17% 4.24%

image 6 18.83% 1.82% 20.65%

image 7 0.92% 4.92% 5.84%

image 8 5.14% 1.66% 6.80%

Fig. 9. Rock sub-images 7 and 8 with corresponding results.

6 Conclusions

Based on the above findings and results, the following conclusions can be drawn.

– An HVS inspired methodology for rock-scene segmentation that combines
intensity and range image analysis to avoid the effects of texture and color
density variations is presented.

– Post-processing in the form of angular series representation and polynomial
fitting is used to extract the underlying rock shape with good accuracy.
However, visual and numerical results seem to agree with literature that the
least squares estimator is sensitive to outliers and therefore other estimators
must be investigated.

– The system appears to perform very well on the experimental data set.
However, more data with variation in texture and color densities is required
for a more rigorous evaluation.
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