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Abstract: A watershed-based segmentation approach that uses iterative bilateral smoothing with an
adapting photometric similarity parameter for pre-filtering is adopted for the segmentation of rock
scenes. However, the resultant segmented images also contain non-rock watershed regions that are
not desired for measuring rock sizes. A proximity-based classifier is applied for the removal of the
latter using features that can be divided into rock shape, edge strength and region intensity
characteristics. Subset feature selection based on Thornton’s separability index is used to remove
redundant and irrelevant features. We achieve final classification rates of 89.91% using the simple k-

nearest neighbor (KNN) classifier.
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distribution.

1. INTRODUCTION

The mineral processing industry requires an instrument
that can segment a scene of rocks on a conveyor belt in
order to facilitate accurate measurement of rock size
distributions. The Machine Vision system under
construction has possible applications in control and
optimization of milling machines. We define a rock size
to be the projected surface area of a rock due to the
constraint imposed by the 2D nature of an image. Based
on this assumption, a rock scene can be accurately
segmented by applying a robust edge detector to find rock
boundaries. A wide range of edge detectors have been
implemented and improved but they are not suitable, as
they require cleaning and joining of the detected pixels.

A method of choice for many image segmentation
applications is the watershed transform [1]. In this
approach, an image intensity map is viewed as a
topographical landscape where intensity minima are
catchment basins and the ridges are the watersheds [2].
The objective is to search for the watersheds by region
growing, growing catchment basins from a predefined set
of local minima until each pixel in the image belongs to
one of the labeled catchment basins. Formal definitions
and implementations can be found in [1]. A
transformation of an original image to a gradient image
followed by an application of the watershed transform
should ideally find rock edges in an image. The general
shortcomings of this approach are over-segmentation and
sensitivity to noise. These can be overcome by careful
implementation of a pre-filtering scheme and a procedure
for selecting a set of predefined local minima.

Linear pre-filtering methods such as the Gaussian filter
are not suitable for this application since they blur

surfaces and edges equally. Instead, edge-preserving
techniques such as anisotropic diffusion and bilateral
filtering are used. These approaches smooth across
surfaces while treating edges as outliers and thus
preserving them [3,4]. Anisotropic diffusion is an
iterative procedure based on a nonlinear anisotropic
version of the heat diffusion equations proposed by
Perona and Malik [3]. It is highly iterative and this is not
a desirable property for real-time applications. On the
other hand a bilateral filter is non-iterative and the
filtering is based on spatial closeness and photometric
similarity of pixels [4]. The key issue with these
approaches is deciding how significant an edge should be
for it to be considered an outlier [3]. Work has been done
in [3] to address this issue.

However, these approaches fail when there are cracks
across rock surfaces. As a result the watershed lines
follow these cracks giving rise to a rock splitting
phenomenon. In this work rock splitting is overcome
using a combination of iterative bilateral filtering with an
adapting photometric similarity parameter followed by a
hierarchical analysis of a stack of thresholded watershed
images. In this framework, watershed lines that are likely
to represent rock boundaries are retained and the rest are
discarded. A proximity-based classifier is then used to
eliminate spurious regions.

This paper is organized as follows. In the next section we
describe the pre-processing that is involved. In section 3,
the overall watershed based segmentation method is
described. This is followed by the classification of
watershed regions in section 4. Results are presented in
section 5. Finally conclusions are drawn in section 6.
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2. PREPROCESSING

In this section we describe the early image processing
operations that are used to -achieve rock location
estimation. This stage is necessary for predefining a set of
minima for the watershed transform. It is divided into
adaptive thresholding, distance transform and peak
detection by h~domes operations.

2.1 Adaptive thresholding

An adaptive threshold is computed as the mean of the
neighborhood pixel intensities for each pixel in the
original image. The key parameter is the neighborhood
size, which is critical for the detection of a limited range
of rock sizes. In this work, we use a 2-window approach
where the smaller window of size 25x25 is used for
detecting small rocks and the larger one of size 95x95 is
used for detecting larger rocks in a 240x240 image. A
logical or operation is then applied to combine the results.
The resultant output together with the original image is
shown below.

Figure 1: The original image and its’ thresholded version
2.2 Applying a distance transform (DT)

The result of the previous operation usually contains
connected white areas that are supposed to be separated
areas. To resolve this, we apply a distance transform (DT)
to the inverted version of the thresholded image so that
the locations of the local maxima of the DT output are the
approximate blob centers. Rock locations can be
estimated by extracting the peaks of distance transform

(D).
2.2 DT peak extraction by h-domes

At this stage we aim to extract the peak locations of the
distance transform. This is achieved using the h-domes
operation, which is based on greyscale reconstruction by
dilation. Greyscale reconstruction literature can be found
in [5]. The sequence of operations commences with a
vertical down shift of the DT by a constant h, followed by
a grey-scale reconstruction by dilation of the original DT
using the shifted version. The drawback of this procedure
is its sensitivity to the h-parameter. If set too high, small
blobs are missed and if too low, large and non-circular
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blobs are split. One approach to solving this is to compute
the centroids of white areas for the correction of incorrect
splitting during segmentaticn. Markers obtained by both
methods are shown below.

Figure 2: The blob centroids and the distance transform
peak locations

3." THE WATERSHED-BASED SEGMENTATION
OF ROCK SCENES

The watershed-based segmentation approach consists of
an iterative Dbilateral pre-filter with an adapting
photometric similarity parameter, a watershed transform
for finding rock edges and a scheme for finding
watershed lines that are most likely to be rock edges. The
overall structure is shown in figure 3. In this structure, the
input signal is the original image, F1 denotes the first
filtering operation, G1 is the gradient operation on the
first filtered image, DM is the marker image from the
distance transform, CM is the marker image containing
centroids of white areas and W1 is the first watershed
transformation.

Figure 3: Segmentation algorithm structure
3.1 Bilateral filtering

Theory: In this application, @ filter that preserves edges is
required as these are indicators of rock boundaries. The
Bilateral filter obeys this! requirement. It performs a
combination of both domain and range filtering
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operations based on spatial closeness and photometric
similarity respectively [4]. The bilateral filter for
grayscale images as defined by Tomasi and Manduchi
has the form:

h(x) =k (x) [[ £ ©)E 0s(f (), fE€)E, 1)

Where the normalization term is
k(x)= e xs(f®), f(x)dE. @

A pixel value at x is replaced with a linear combination of
similar and nearby pixels. The terms ¢(&,X)and

s(f(€), f(x)) are the closeness and photometric

similarity functions of the Euclidean distance between
their arguments respectively. Both functions should
generally decrease with increasing distance. A common
case is where these functions are defined as Gaussian
functions of the Euclidean distances.

Gaussian bilateral filtering: In this version, the spatial
closeness and photometric similarity functions are
defined as Gaussian functions of their arguments as
shown below.

(%) = e‘%(d(a,x)/od)z . 3)
Where:
dE,x)=|&-x| @

is the Euclidean distance between & and x. The
photometric similarity is defined as:

s(fE), f(x)) = e"%@(f@),ﬂx))/c,)z ' (5)

Where:
3(f (&), f(X) =]/ (&)~ (6)

is the absolute difference of the intensity values f( £ ) and
f(x). This implementation of the bilateral filter requires
prior values of the space parameter ¢, and the similarity

or range scale parameter ¢, . The space parameter has
little effect on the preservation of edges, it only imposes a
closeness constraint so that pixels far away from the
kernel center have little influence on the kernel weighted
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mean. On the other hand, the value of the photometric
similarity parameter is critical and can be estimated using
the global gradient variation as defined in [3] for the
anisotropic diffusion technique.

o, =1.4826 x median(|VI - median, ([VI|)) )

Where: ”VI H is the gradient magnitude of the image L

A more accurate estimate of this parameter can be
achieved by computing the local gradient variation in
predefined neighborhoods and interpolating to cover the
whole image. A criterion for an optimal similarity
parameter is rock edge preservation and surface crack
smoothing. This requirement cannot be met using neither
a single filtering operation nor iterated filtering where a

single value for &, is used because there is a trade-off on
the magnitude of o, . As & cure for this, an iterative

bilateral filter with an adapting o, value is proposed.

Iterative  bilateral  filtering with an  adapting

O, parameter: In this approach, the image is effectively
with  the
o, estimated each time using equation 7 and weighted

filtered n-times range scale parameter

accordingly. The weights increase monotonically from
the first to the last filtering operation so that the resultant
n-images exhibit fewer cracks as one moves from the first
to the last filtered image. Multi-scalar techniques are
usually performed in the domain direction to facilitate the
detection of a wide range of object sizes. In this
application the domain scale is kept constant and the
range scale parameter is varied to detect edges of various
strengths. This scheme forms the first stage of our
watershed-based segmentation approach as shown in
figure 3.

3.2 The gradient watershed transform

A gradient watershed transform can be classified as an
edge detector because it locdtes regions of high gradient
strengths given a gradient image as the input. Its main
drawback is over-segmentation, which is usually due to
the inaccurate determination of markers. In this work, we
use the outputs of the pre-processing algorithm as the set
of markers as shown in figure 3. A parallel watershed
scheme is then applied to the filtered images as shown in
figure 3.

Multiple watersheds analysis: This approach considers a
collection of n-binary waterghed images as containing a

population of edge samples

desired combination of edge

the n-binary watershed imag;
thresholding procedure is
thresholds are integers with
unity and the maximum n.

that is likely to contain the
samples. A summation of
cs followed by a multi-level
firstly executed. The n
the minimum threshold of
The output is a stack of n
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binary watershed images with the bottom level image
containing all the watersheds from the n-images and the
top image containing the watersheds that are most likely
to be rock edges but have poor pixel connectivity. The
underlying assumption is that a watershed line is likely to
be a rock edge if it survives most of the thresholding. The
watershed image from the centroid markers has highly
merged regions and is placed at the top of the stack as
shown in figure 3.

The evaluation algorithm collects regions starting from
the highly merged regions at the top of the stack to the
highly split regions at the bottom. The selection criterion
is:

(> 9 (C2p) ®

region
Where A, is the area of the corresponding white area

in the thresholded image, A4 is the area of the

region

watershed region of interest, 0 is a threshold value that
ranges between 0 and 0.75, ¢ is a threshold value that

ranges between 0.5 and 0.8 and C is the circularity of
the watershed region of interest which is calculated as:

47D4region
C = T . (9)

Where P is the perimeter of the watershed region. The
final output of the segmentation algorithm is shown in
figure 4.

Figure 4: Segmentation output

4. CLASSIFICATION

As can be seen in figure 4 that the segmentation output
contains spurious regions in addition to rock regions. The
purpose of a classifier in this context is to discriminate
between rock and non-rock regions. In this section we
present the adopted methodology for data collection,
feature descriptions, feature subset selection results, a
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brief description of the k-nearest neighbor (KNN)
classifier and its application to the problem.

4.1 Methodology

A data set consisting of 20 images is assembled. The
images were captured from two mineral processing plants
under different lighting conditions. The type of ore that is
handled by the plants is also different in terms of color
and texture. After watershed-based segmentation, a new
set of images that has 2415 regions or "potential rocks”,
an average of 120 regions per image and the number of
regions per image ranges between 86 and 146 regions, is
formed. The data set is partitioned into training,
validation and testing sets with proportions as shown in
table 1. The training set is a mixture of images obtained
from the two mineral plants in equal proportions and, the
validation and test-sets are obtained from one plant.
Therefore the system is expected to generalize well to
images captured from these two mineral processing
plants. The labeling of examples is performed manually
using the author’s discretion and thus an element of
human error is expected.

Table 1: Data partitioning

Partition | Images | Regions Fraction of actual
rocks
Training 10 1117 22.74%
Validation 5 644 13.35%
Testing 5 654 12.69%
Total 20 2415 17.52%

4.2 Feature extraction

Eleven features are measured and can be broadly divided
into rock shape, edge and gray level characteristics.

Centroid to boundary distance variance feature: is
measured by firstly finding the centroid of the region ¢
and its boundary pixel coordinates b. This measure is
computed as the variance of the distances from ¢ to each
of the b, pixels.

Proportion of dark interior pixels feature: is computed as
the ratio of the number of detected dark interior pixels of
the region to the total area of the region.

Proportion of dark boundary pixels feature: is computed
as the ratio of the number of dark boundary pixels to the
region perimeter.

Proportion of thresholded area to watershed region area
feature: is computed as the ratio of the area of the region
in the adaptively thresholded image to the area of the
corresponding watershed région of interest.
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Average interior gray level feature: is computed as the
ratio of the total gray level on a small disk around the
region centroid to the area of the disk.

Average boundary gray level feature: is computed as the
ratio of the total boundary gray level to the perimeter of
the region.

Average interior gray level gradient feature:  is
computed as the ratio of the gray level gradient on a small
disk around the region centroid to the area of the disk.

Average boundary gray level gradient feature: s
computed as the ratio of the gray level gradient on the
boundary to the watershed region perimeter.

Boundary and interior gray level absolute difference: is
computed as the absolute difference of the boundary and
mterior gray level features.

Boundary and interior gradient absolute difference: is
computed as the absolute difference of the boundary and
interior gradient features.

Interior gray level variance: is computed as the variance
of the gray levels inside the region.

4.3 Feature subset selection

Proximity based classifiers are sensitive to irrelevant and
redundant features [6] which impair the separability of
the data in the feature space. Feature subset selection
procedures attempt to remove such features and thus
improve the separability of the data. In this work, we use
Thornton’s separability index as an optimization
objective function such that the feature set with the
maximum separability index is sought. A separability
index of unity represents the case where the classes are
separate with no overlap while a zero index represents
total mixing of the classes. An evaluation of the
separability index function is carried out for all the 2047
possible combinations of features using equation 10:

Zn:(f(xi)+f(x§)+l)mod2

§i=-= , (10)
n

where: X; is the nearest neighbor of x;, and 7 is the

number of training examples or points. After these
evaluations, the feature combination with the maximum
separability index is selected. Table 2 shows the
maximum separability index when all the features are
present and after the optimal combination was selected on
the training set. A set of 6 of the 11 features consisting of
the centroid to boundary distance variance, proportion of
dark interior pixels, average interior gray level, average
boundary gray level, difference of interior and boundary
gray levels, and the difference between interior and
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boundary average gradients are retained as the optimal
feature set.

Table 2: Table of separability indices.

All features Optimal features

78.25% 82.45%

4.4 Classifier training

This section provides a brief description of the k-nearest
neighbor classifier and the training results.

The k-nearest neighbor (KNN}: A query point is assigned
a label of the majority of its k-nearest training points. The
majority vote is achieved by averaging the labels of the k-
nearest training points so that the negative effect of
erroneous points in the data is cancelled. Euclidean
distance is commonly used for quantifying distance in an
N-dimensional space. The parameter k is an odd integer
and is selected by cross validation on independent data.

Finding the optimal k value: A range of k-values between
1 and 25 are pre-selected anid for each value the KNN
algorithm is executed for the labeling of the validation
data set whose labels are pre-determined manually for
comparison purposes. The percentage accuracy is
recorded as the percentage of points that are correctly
labeled and is plotted in figure 5. The k-value with the
highest accuracy is selected as shown in table 3.

Table 3: The opitimal k-value

k-value Percentage accuracy
13 90%
knn oross walidation
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Figure 5: Training results
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5. RESULTS
5.1 Testing for generalization

The performance of the KNN is evaluated on independent
test data to test its generalization to new unseen data. The
test set consists of 654 feature vectors from 5 images.
Classification rates of 89.9 percent are achieved using a
k-nearest neighbor with the k-value of 13 as shown in
table 4. The visual results of classifying the regions on
the 5 images are shown in figure 6. A visual comparison
of the manually classified regions and the KNN classified
regions shows that the classifier has generalized well.

Table 4: Generalization accuracy

k-value Classification accuracy

13 89.91%

Other classifiers in the form of the Probabilistic Neural
Network (PNN) [8], the Kernel Adatron Support Vector
Machine (SVM) [7] and the Regularized Least Squares
Classifier (RLSC) [9] can also be applied on the test-set.
In general, these techniques assign a Gaussian kernel to
each training point so that test points that are closer to
that training point have higher activation values than
those that are further away. A weighted sum of labeled
activations is performed to determine the decision
function value for that test point. Finally, a threshold
(usually set at zero) is applied to determine the class label
of the test point.

These techniques differ in how the weights of decision
function are determined and this subsequently affects the
smoothness of the decision boundaries that are formed in
the feature space. The details of these differences can be
found in [10]. From table 5, it can be seen that the
regularized least squares classifier (RLSC) outperforms
all the other classifiers on this data set.

Table 5: Performances of other classifiers

PNN SVM RLSC

91.59% 90.07% 52.35%

6. CONCLUSIONS

Based on the above findings and results, the following
conclusions can be drawn.

e The rock scene segmentation algorithm does
trace the rock edges as required. However, the
problem of quantifying its performance is not
tackled.

o The KNN classification results show that the
selected set of features is effective and confirms
89.9 percent of the target labels.

e A comparative evaluation of various classifiers
shows that RILSC outperforms the other
approaches on the test set.
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Figure 6: Test results showing manually classified
regions on the left and KNN classified regions on the
right.
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