
Visual Hull Surface Estimation

Phillip Milne Fred Nicolls Gerhard de Jager
Digital Image Processing Group

Department of Electrical Engineering
University of Cape Town

South Africa
phillip@dip.ee.uct.ac.za

Abstract

This paper describes a technique used to approx-
imate the surface of an object’s visual hull. The
hull’s basic structure is initially represented by a
partitioned 3D space using voxels. The marching
cubes algorithm then assigns polygonal patches to
surface voxels depending on a certain criteria. It is
less computationally intensive to manipulate a few
triangular patches than a number of six-faced vox-
els. The visual hull model is further refined by ap-
plying a binary search to the vertices of each surface
that improves the positional accuracy of each vertex.
The method is applied to a small plastic cat using a
5-camera system and results are shown.

1 Introduction

In computer graphics and machine vision, it is often
necessary to model real world objects. The infor-
mation contained in a 3D model can be useful in
systems that require any one of the following:

• Multimedia Content: making movies or com-
puter games with 3D objects.

• Classification: deciding on the type of shape of
an object.

• Recognition, e.g. recognising a person’s ges-
tures.

Information on the structure of an object is con-
tained in any 2D image of that object (an image of
a small plastic cat can be seen in figure 1). The in-
formation from a single view can be used towards
approximating a 3D model of the object. The accu-
racy of the model is improved with an increase in
the number of different views available.

Figure 1: Multiple image views of a small plastic
cat.

This paper discusses some of the concepts needed in
order to build a 3D model of an object from silhou-
ette images. These silhouette images are obtained
from an accurately calibrated camera system [4] and
used to generate a voxel based model. This model
is used as an initial estimate of the visual hull of an
object. Surface voxels are then replaced with trian-
gular patches. This has the effect of smoothing the
visual hull. A binary search further refines the accu-
racy of the visual hull.

2 The Visual Hull

An object’s visual hull is a geometric representa-
tion of its structure. This representation is an up-
per bound estimation and is not necessarily an exact
copy of the object. Visual hulls cannot capture con-
cavities, such as the inside of a tea cup.
The visual hull can be computed from the silhou-
ettes of an object taken from differing viewpoints.
Silhouettes are extruded to create cone-like volumes
which intersect to form the object’s visual hull. The
accuracy of the visual hull is refined as more views
are added.
Sample silhouette images can be seen in figure 2.

1

13



These silhouettes were obtained by thresholding
grey scale images.

Figure 2: Five silhouette images of a plastic cat

3 Voxel Representation

One method to represent an object’s visual hull is
to create a spacial occupancy map using a number
of volume elements or voxels. The concept involves
starting with an initial cubic volume and “carving
away” parts that are not included in the visual hull.
Voxels are the 3D equivalent to the pixels that make
up a 2D image. A single voxel element is a scaled
cube with 3D coordinates in some coordinate sys-
tem. It has ordered vertices (as shown in figure 3)
that can each be assigned a different value. These
values decide the occupancy of the voxel.
The three voxel occupancy categories are:

• Voxel is completely inside the visual hull

• Voxel is completely outside the visual hull

• Voxel has the surface of the visual hull running
through it

V0

V1

V2 V3

V4
V5

V6
V7

Figure 3: A voxel with ordered vertices.

The size of the smallest voxel determines the reso-
lution of the visual hull. As the number of subdi-
visions increases, so does the amount of processing
time require to compute the model.
Using a voxel structure to represent an object has
certain flaws that can be overcome provided that
the system has a basic knowledge on the shape of
the object being modeled. When objects are snake-
like or have sharp peaks, they appear discontinuous.
This flaw can be overcome by making the voxels
smaller and hence increasing the resolution of the
visual hull.

3.1 The Octree Structure

An octree is a tree data structure [1] that can be used
to represent the voxel based visual hull model. This
involves specifying an initial voxel, known as the
universe cube. The universe cube is split into 8 sub-
octants. Each suboctant is iteratively subdivided un-
til some predefined limit is reached. This idea is
more clearly illustrated in figure 4.

10

13

9

1
3

5

U

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 4: A simple volume represented by an octree
and the corresponding tree structure with nodes [?].

Figure 5 illustrates how the accuracy of the visual
hull can be improved by increasing the number of
subdivisions. The first visual hull was computed
with 2 subdivision levels, the second with 3 and the
third with 4. The larger the number of subdivisions,
the more computationally expensive the algorithm
becomes.

4 Surface Approximation

Using a number of voxels to represent a visual hull is
a simple concept, and easily implemented. The large
number of voxels used to make up the visual hull
causes other systems using these models to become
sluggish. A solution to this problem is to apply the
marching cubes algorithm to all surface voxels of
the visual hull.
The marching cubes algorithm approximates a
polygonal surface that passes through the surface

14



Figure 5: The 3D voxel based visual hull model of the imaged cat at 3 different subdivision levels.

voxel. It also results in a smoothing of the voxel
corners along the surface of the visual hull [5].

4.1 Marching Cubes

The marching cubes algorithm was first used to vi-
sualise mathematical equations. It assigns a sur-
face to a voxel depending on the voxels corner val-
ues and how they are arranged. Surfaces are made
up of a number of triangular patches. The three
vertices of the triangle are ordered using the right
hand rule. This means that they are ordered anti-
clockwise about the surface normal. The marching
cubes idea can be more easily illustrated by its 2D
equivalent marching squares.

4.1.1 Marching Squares

Figure 6 shows how a line is matched to a square,
depending on its corner configuration. Solid black
circles indicate that a corner is part of the target,
while the absence of a circle indicates that a corner
is background.
Four images of the same silhouette view that have
been placed inside a universe square are depicted in
figure 7. Each universe cube has been subdivided
3 times. Black indicates the computed 2D visual
hull while grey is the colour of the actual visual hull.
Each image is described below:

A The silhouette image view inside a universe
square.

B The 2D implementation of a voxel based visual
hull.

C The marching squares visual hull model.

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Figure 6: Marching squares.

D The marching squares model is refined using a
binary search.

The concept of a binary search, shown in figure 7.D,
is used in the final implementation of the marching
cubes algorithm and is discussed in more details in
a later section.

4.1.2 Cube Categories

The corner values of the voxel determine the type
of surface that passes through the voxel. Of the 256
corner combinations, there are 15 unique categories

15



B.A.

C. D.

Figure 7: Marching squares sample.

that voxels can be classified into [3]. Each differ-
ent category has a different surface which passes
through it (see figure 8).

4.1.3 Ambiguities

Using the 15 surfaces illustrated in figure 8 alone re-
sults in various ambiguities [6]. These are easily vis-
ible in the resultant visual hull in the form of holes
[2]. Figure 9 shows why these ambiguities occur,
and also shows how they can be overcome. Using
the ideas displayed in this figure, a new table of 33
surfaces can be created. (see figure 10). Using this
table solves the problems that arise in ambiguous
cases. Figure 11 shows the effects of applying the
marching cubes algorithm to the voxel based visual
hull models in figure 5. These models are smoother
than the voxel based versions from figure 5. The
patches are coloured according to their voxel cor-
ner category. The improvement on the voxel model
is quite evident in the middle marching cube visual
hull model.

4.1.4 Refining the Surface

The accuracy of the visual hull model can be im-
proved by applying a binary search to the vertices
of each triangular patch making up the hull surface.
This requires that each vertex in the assigned sur-
face be projected back into the silhouette images and
tested. The vertices are then moved along the cube
edges in a direction determined by the result of their
projection test. Figure 7D. shows the effect that a
single iteration of this search has on a 2D model.

Figure 8: The 15 marching cube surfaces [7].

Figure 9: One of the ambiguous marching cube sur-
faces.

The result of applying this binary search to the
marching cubes visual hull from figure 11 can be
seen in figure 12. The effects are more noticeable in
the first visual hull model. The higher the number of
voxel subdivisions, the less noticeable the effects of
this search become.

16



Figure 10: The 33 marching cube surfaces[6]

17



Figure 11: The 3D marching cube visual hull model of the imaged cat at 3 different subdivision levels.

Figure 12: The 3D marching cube visual hull model of the imaged cat at 3 different subdivision levels,
with 4 iterations through a binary search.

5 Conclusion

Marching cubes reduces the amount of time required
by a computer to manipulate a visual hull. It pro-
duces more accurate models with smoother surface
than the voxel based method (comparing figure 5
with figures 11 and 12). The binary search element
in the algorithm improves the visual hull accuracy
on voxel models with low subdivision levels, but its
effects are less noticeable at higher levels.

6 Acknowledgements

I would like to thank the De Beers Group Technical
Support for their financial support and input.

References

[1] Narendra Ahuka and Jack Veenstra, Generating
octrees from object silhouettes in orthographic
views, Pattern Analysis and Machine Intelli-
gence 11 (1989), no. 2, 137–149.

[2] Ken Brodlie and Jason Wood, Computer graph-
ics, Recent Advances in Volume Visualization
(2001).

[3] R. Scateni C. Montani and R. Scopigno, Dis-
cretized marching cubes, Internet Paper.

[4] Keith Forbes, Anthon Voigt, and Ndimi Bodika,
An inexpensive, automatic and accurate camera
calibration method, Proceedings of the Thir-
teenth Annual South African Workshop on Pat-
tern Recognition, PRASA, 2002.

[5] William E. Lorensen and Harvey E. Cline, Com-
puter graphics, Marching Cubes: A High Res-
olution 3D Surface Reconstruction 21 (1987),
no. 4, 163–166.

[6] Antonio Wilson Vieira Thomas Lewiner, He-
lio Lopes and Geovan Tavares, Efficient im-
plementation of marching cubes’ cases with
topological guarantees, Ph.D. thesis, Pontifical
Catholic University, INRIA, 2004.

[7] Kwan-Yee Kenneth Wong, Structure and mo-
tion from silhouettes, Ph.D. thesis, University of
Cambridge, 2001.

18


