
Generation of Visual Hull Models of 3D Objects

Phillip Milne Fred Nicolls Gerhard de Jager
Digital Image Processing Group,

Department of Electrical Engineering,
University of Cape Town,

South Africa
phillip@dip.ee.uct.ac.za

Abstract

This paper describes a method for generating
visual hull models of 3D objects from digital im-
ages. The method can use one or more cameras
in different setups to acquire various views of an
object. From the generated images, 2D objects
are segmented out giving the objects silhouettes.
The silhouettes are projected into 3D space to
create an estimate of the upper bound to the
structure of the object (visual hull of the ob-
ject). Methods to display the output are also
provided.

1 Introduction

In computer vision systems it is often necessary
to determine the three dimensional (3D) struc-
ture of an object. The information contained in
the structure can be used for many things, such
as classification and/or recognition of objects.
An application where this could be of some ben-
efit is in a shape classification system.
There are currently a number of different au-
tomated techniques available that could accom-
plish this task. The technique to be investigated
in this paper involves the computer processing of
digital images to generate the visual hull. Mul-
tiple images are generated from cameras posi-
tioned around an object in an accurately cali-
brated system. Calibration is discussed briefly
in this paper.

1.1 The Visual Hull

The visual hull is computed by back-projecting
silhouettes observed from multiple viewpoints in
a process known as volume intersection. The

visual hull is an upper bound estimate to the
3D structure of an object.

2 Cameras

Because cameras play such a significant role in
this project, it is necessary to become familiar
with the various characteristics of these digital
devices. The pinhole camera model is briefly
described below.

2.1 The Pinhole Camera Model

All cameras perform a perspective transforma-
tion from some 3D space (the real world) to
a 2D point in the retinal plane (image plane).
In the camera model, three different coordinate
systems are defined: the camera coordinate sys-
tem, the image plane coordinate system and the
world coordinate system.
In the camera’s coordinate system, the camera
is positioned at the origin (0,0,0). The distance
from the camera centre to the image plane is the
focal length (f). The focal length is the distance
from the camera center along the optical axis to
the point where it intersects the image plane at
the principal point (or image centre) [5].
Most images use pixels as their unit of measure-
ment, but this is dependent on the technology
of the camera. The image origin (0,0) is gen-
erally positioned in the top left corner of the
image . To map a point from the image refer-
ence frame to the cameras, the units need to be
converted to match that of the camera’s. A co-
ordinate translation, and sometimes a scaling,
is then used to map a point from one reference
frame to the other. This can be more clearly
seen in figure 1 [1].

27



The world coordinate system is discussed in a
later section.

Figure 1: Pinhole Camera Model

2.2 Camera Systems

Multiple image views can be obtained from a
variety of different camera setups. The more
views of the object available, the more accurate
the visual hull will be. A few different ideas for
accomplishing this follow.

2.2.1 Multiple-Cameras:

As the name implies, more than one camera is
used in this setup. (See figure 2)
This is the simplest method to implement and
also the most expensive as it involves using more
than one camera. Here, the cameras are placed
in different positions relative to the object.

Figure 2: Multiple Camera Setup

2.2.2 Mirror Setup:

The acquisition of images using a mirror setup
reduces the number of expensive cameras re-
quired in the implementation, while still provid-
ing the multiple views of the object. This could
increase the amount of software processing. An
example of this setup is displayed in figure 3.
An advantage of this method is that in order
to improve the estimated upper bound of the
object’s shape, more mirrors are required, and
not more cameras. A possible negative aspect is
that more mirrors could also increase the pro-
cessing requirements in the software, as it would
have the effect of increasing the number of vir-
tual cameras.

Figure 3: Mirror Setup

2.2.3 Rotation of Object or Camera:

A rotating camera setup is not always practi-
cal for most real time systems, but could be
more useful in many other cases. This setup can
produce more accurate results depending on the
number of rotational increments used. The ac-
curacy on the visual hull estimate increases with
the number of views.

3 Calibration

In this system, the inputs are not limited to the
images alone. A detailed knowledge of the cam-
era’s poses and positioning relative to each other
is also a necessity. To obtain this information,
our system needs to be accurately calibrated.
System calibration can be done in many ways,
the more commonly used method involving a
calibration object.

28



3.1 Calibration Object

A calibration object can be of any size or propor-
tion (preferably matched to the camera’s field of
view), so long as its dimensions are accurately
known. As an example, a 20-sided calibration
object is shown in figure 4. This object was
constructed from cardboard. Each face is tri-
angular. The faces of this object were marked
using a binary labelling system.

Figure 4: Calibration Object

The near exact dimensions were calculated from
many (in excess of 20) image views of the cali-
bration object. The images, the number of sides
on the object, and a description of the binary
pattern were fed into a program which had as
its output the exact dimensions of the input ob-
ject [2].

3.2 System Calibration

Once the calibration object has been placed into
the camera environment, calibration can begin.
In initial experiments, two cameras were used
(See figure 2. for a description). The images
obtained from this environment, along with the
known accurate structure of the calibration ob-
ject, were then passed to a different program
which returned information on the relative pose,
positioning and focal lengths of the two cameras.
The most important output returned by this
program is the Rigid Body Transforms which
enable the movement between each cameras ref-
erence frame to a world coordinate system that
includes both the camera’s [3].

3.3 World Co-Ordinate System

Once the desired camera setup has been imple-
mented, a detailed knowledge of the environ-
ment is required. The important information

being the relative pose and positioning of the
different cameras with respect to the object and
each other. The origin of the world coordinate
system in this case is arbitrary. The world refer-
ence frame includes all cameras as well as the ob-
ject. To move from a camera’s reference frame
to the world reference frame, a rigid body trans-
form is required.

3.3.1 Rigid Body Transform

A matrix where the upper 2 × 2 matrix is or-
thogonal represents a rigid body transform. It
preserves both lengths and angles of shapes.
Note that an arbitrary sequence of rotations and
translations is also of this form i.e. it is also a
rigid body transform.

4 Image Processing

The previous sections describe the necessary
procedure required before an object can be
placed into the system. What follows are the
tools used to complete the task.
In an experiment, a few points in Matlab were
plotted (using plot3). A number of varying
posses of an object with points marked on
it were generated (see example in figure 5).
The position of each point in the image plane
was calculated manually (using ginput). These
points were translated from the image plane into
the camera’s reference frame, and then the rigid
body transform was applied to move them into
the world reference frame.

4.1 Image Segmentation

An image is broken up into foreground (or tar-
get) and background. This procedure is known
as segmentation. Some methods available to ac-
complish this include “Watershed” and “Region
Growing” [4] segmentation. For our purposes,
the target is our object and everything else is
background. Although accurate segmentation
is an important part of this project, it is not
discussed in this paper.

4.2 Back Projection

Once the cameras and the points on the dif-
ferent image planes have been moved into the
world co-ordinate system, all that is required is
for the points to be projected to where they in-
tersect each other. This is the the position in

29



Figure 5: Two views of object points

the world where the points lie. Unfortunately,
due to noise and human errors, the lines do not
(and never will) actually intersect. Therefore,
the point that is exactly between where they
are closest is selected.

Figure 6: Image points projected into 3D space

Matlab provides tools to represent points in a
3D space (plot3 and scatter3). Standard matrix
geometry can be used to project lines, and then
compute the region where two projected lines
are closest.

4.3 Representing an Object in 3D

There exist many different ways to represent a
3D object on a computer. Matlab is one pro-
gram that contains different tools for displaying

3D objects. Another option is to use Virtual
Reality Modelling Language (VRML) as it is
more portable and was specifically designed for
this purpose. VRML viewers can be downloaded
from the internet, and plug into standard inter-
net browsers. The viewer used to implement the
example for this paper is by Cortona Graphics.
A Matlab script was used to generate the “.wrl”
file which was used by the VRML viewer.
The method implemented in tests used a num-
ber of voxels to construct the visual hull.

4.3.1 Voxels

Voxel is short for “volume element”, and can be
represented by a cube.
There are two ways to go about this. Either
split the whole 3D region into some predefined
number of voxels and then move through them,
testing each element to see if it is part of the
target or not.
The other, more efficient, method starts with an
initial bounding box and splits it into 8 smaller
cubes. Each subsection is tested to see if it is
part of the target. The following steps are then
followed: If all corners project to inside target,
mark voxel as being part of target. If none of
the corners are included in the target, leave it
unmarked. If some of the corners are found to be
part of the target, subdivide the smaller box and
start the algorithm again. This is recomputed to
some predefined limit. An example of this can
be seen in figure 7. The algorithm is

∑l
n=0 8n.

Figure 7: Reconstructed 3D Cat in VRML

This algorithm can become quite complicated to
code, but uses a simple and efficient concept. It

30



does have a shortfall in that some parts of an ob-
ject might fall within a voxel, but do not touch
any corners. A snake like object is one exam-
ple of this kind of phenomena. The algorithm
would need some extra mechanisms to move be-
yond this obstacle.

5 Conclusion

A description of the ideas and methods involved
with generating a 3D model of a 3D object is
given in the sections above. This model can be
generated from multiple views of the object us-
ing one or more cameras in an accurately cal-
ibrated system. System calibration was briefly
discussed. Computations were implemented in
Matlab. The output was displayed using Cor-
tona Graphic’s VRML viewer.

6 Future Research

The following areas require further research and
study:

6.1 Mirror Camera Setup

To investigate feasibility of using the mirror
setup described in a previous section.

6.2 Shape Analysis of Visual Hulls

Images can be classified and sorted according
to their shape, and would require some sort of
learning mechanism.

6.3 Texture Mapping

Mapping of the texture information from the im-
ages to the final visual hull models. This is made
easier if the model is represented by many vox-
els.

6.4 Mex VRML generation

The software used to compute and generate the
Visual Hull ran too slowly in Matlab due to the
many “for” loops. The accuracy of the voxel
method could be improved, but would need to
be redone using a “mex” wrapper to speed up
the algorithm.

Acknowledgements

I would like to thank TSS Technology, De Beers
for all of their support. 

References

[1] Ricardo Chavarriaga and Raquel Urtasun,
Camera calibration, Tech. report, Graduate
School in Computer Science, 2001.

[2] Keith Forbes, Anthon Voigt, and Ndimi
Bodika, An inexpensive, automatic and ac-
curate camera calibration method, Proceed-
ings of the Thirteenth Annual South African
Workshop on Pattern Recognition, PRASA,
2002.

[3] David A. Forsyth and Jean Ponce, Computer
vision - a modern approach, Alan Apt, 2003.

[4] Phillip Milne, Pixel based segmentation us-
ing region growing techniques, November
2001, Undergrad Thesis.

[5] E. Trucco and A. Verri, Introductory tech-
niques for 3-d computer vision, 1998.

31


