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Abstract— For mobile robots to perform certain tasks in
human environments, fast and accurate object verification
and recognition is essential. Bayesian approaches to active
object recognition have proved effective in a number of
cases, allowing information across views to be integrated in
a principled manner, and permitting a principled approach
to data acquisition. Existing approaches however mostly rely
on probabilistic models which make simplifying assumptions
such as that features may be treated independently and that
objects will appear without clutter at test time. We develop
a number of probabilistic object and viewpoint models which
are explicitly designed to cope with situations in which these
assumptions fail, and show these to perform well in a Bayesian
active recognition setting using test data in which objects appear
in cluttered environments with significant occlusion.

I. INTRODUCTION

3D Object recognition is an important task for mobile
platforms to dynamically interact in human environments.
This computer vision task also plays a fundamental role in
the areas of automated surveillance, Simultaneous Localiza-
tion and Mapping (SLAM) applications for robots and video
retrieval. The recognition of objects that appear in cluttered
environments with significant occlusions is a complicated
and challenging problem. In this paper we present a feature-
based Bayesian framework for integrating information in a
principled manner across multiple views for active 3D object
recognition. Experiments are conducted with different feature
integration probability models on a challenging dataset.

In real-world situations multiple viewpoints are necessary
for recognition [1] [2] as single viewpoints may be of poor
quality and simply not contain sufficient information to
reliably recognise or verify the object’s identity unambigu-
ously. This is especially true if they are occluded or appear
in cluttered environments. Even with multiple views most
systems have no tangible method of determining the accuracy
of the recognition method. The system presented in this paper
uses multiple images for 3D object recognition and provides
a certainty/belief as to the current object’s identity and pose.

Bayesian methods have proved effective in many active
vision scenarios, and general frameworks for active sensing
have been proposed [3], as well as specific models for scene
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exploration and tracking from surveillance videos [4] and
object recognition from a mobile platform [5] [6]. In many
of these cases however, attention is paid to the general
problems of optimal methods for fusing data and planning
sensing strategies while assuming a probabilistic model for
the phenomenon of interest (object/environment) is given.
By assuming simple probabilistic models and using highly
controlled datasets, general methods for fusion and planning
are easily demonstrated. However, it is unclear how well such
models can cope in unconstrained settings.

In this paper we focus particularly on the question of how
to represent an object probabilistically in order to perform
effective active object recognition in the challenging scenario
of highly cluttered test scenes. While adopting a standard
Bayesian framework for data fusion, we explore two novel
probabilistic models for representing object and viewpoint
hypotheses in such circumstances and show these to perform
well on a challenging dataset.

Our models build on a number of techniques that have
proved effective for object recognition in both active and
non-active settings. We rely firstly on interest points and
local features extracted from training images. These have
the advantage that their representation is more robust to
occlusions, clutter and noise, and have successfully been
used in 3D object recognition [7] [8] [9]. Our system uses the
Scale Invariant Feature Transform (SIFT) [10] detector and
descriptor to extract relevant object features. SIFT is robust
to changes in illumination and affine transformation. Further,
the features extracted from the training images are inputted
directly into a vocabulary tree data structure [11] which fa-
cilitates quick matching and provides a method to discretize
the feature space to reduce feature dimensionality when
considered in the Bayesian framework. We note however that
the probabilistic models we consider are not dependent on
these particular low-level representation choices.

The structure of the paper is as follows. Section II
discusses related work and Section III elaborates on the
Bayesian active object recognition framework used. The
probabilistic objects and viewpoint models are explained
in Section IV with the experiments conducted described in
Section V. Sections VI discusses the conclusions.



II. RELATED WORK

A wide range of general frameworks for active vision
and active sensing have been explored, including information
theoretic and Bayesian approaches [3] [6] [4] [5] [12], dis-
criminative approaches [13] [14], and approaches based on
other theoretical models such as possibilistic and Dempster-
Shafner theory [15], [16]. We adopt a Bayesian frame-
work due to its flexibility in incorporating diverse modeling
choices in a principled manner. Further, in Borotschnig et.
al. [16] a comparison was conducted between probabilistic
(Bayesian), possibilitic and Dempster-Shafner theory ap-
proaches to data fusion. They concluded that the probablistic
approach worked best for 3D active object recognition,
although all these methods use test images with a single
object in an uncluttered environment with no occlusions.

An early method to adopt a Bayesian approach [5] used an
appearance based object representation namely a parametric
eigenspace distribution, and updated the object and pose
hypotheses using Bayes theorem. A limitation of this model
is that, because a global eigenspace representation is used,
the model copes poorly with recognizing highly occluded
objects, and requires uncluttered test sequences.

A later method [13] uses SIFT to extract features from the
training objects, which provides robustness to affine trans-
formations and variable illumination. Using such features
also avoids relying on global information for recognition.
However, the method does not model the geometric structure
of features, which is a disadvantage in confronting cluttered
scenes (the test data are all uncluttered). Further, since the
model is non-probabilistic, there is not a natural way to build
additional assumptions into the framework.

Our framework is most directly related to that of [12]. This
method is also based on SIFT, and, drawing on the tech-
niques of [10] [7] for non-active recognition, incorporates
geometric structure by filtering the features processed at a
given view using the Hough transform to identify the most
likely transformation from a training example. However, the
method does not explicitly include the transformation as part
of the probabilistic model, and further does not model the
background or occlusion process. We deal with these issues
by introducing a background distribution and latent occlusion
and transformation variables, and incorporate a distribution
over both object and pose, unlike [12].

Other related active recognition methods include Callari et.
al. [6], who estimate Bayesian probabilities with neural nets
and minimizes the expected ambiguity measured by Shannon
entropy. They provide a measure for the object’s idenitiy but
not for pose. Also, the boosting and support vector machines
strategy of [14] estimates both object and pose, but uses
substantially uncluttered test data.

Following [12], we also make use of a vocabulary tree
representation [11] for the low-level features in our models.
This has shown to be effective in both 2D and 3D recogni-
tion tasks [11], and also in Simultaneous Localization and
Mapping (SLAM) approaches for matching similar images
and for loop closure [17].

III. BAYESIAN ACTIVE OBJECT RECOGNITION

Problem Statement: The active object recognition task can
be defined as follows. At training time, for each object
o = 1...O we capture set of images, one at each of a
series of P regularly spaced training views around the
object indexed by their viewing angle, for example θ ∈
{0◦, 20◦, 40◦, ...340◦} = Θ, P = |Θ|. For simplicity, we
consider only varying the viewing angle around one axis
(e.g. vertical), although minimal changes are necessary to
incorporate viewpoints from across a viewing sphere. We
thus have a training image Itrain

o,θ for each object/view pair.
At test time, we are presented again with one of the

training objects, and must identify a) the object present o?,
and possibly b) the orientation of the object, which may
be specified by the training viewpoint θ? corresponding to
a reference test view. We are allowed to capture images
of the test object at a sequence of test views, δ1, δ2, ... ∈
{0◦, 20◦, 40◦, ...340◦}, where the angles δt can be in any
order. We label the image corresponding to the t’th test view
Itest
δt

, and treat δ1 = 0◦ as a reference view (i.e. Itrain
o?,θ? will

denote the training view we believe corresponds to Itest
δ1

).
An active object recognition algorithm is allowed to choose
both the sequence of test views δ1, δ2, ..., and when to stop
capturing further viewpoints and generate an output.

A number of possible approaches can be taken to the
active object recognition task. Bayesian probability provides
a principled framework within which to build algorithms, and
below we give the general outline of two possible methods.
Each requires us to specify a probabilistic model for objects
or object viewpoints, and we look at specific options for these
in Sec. IV. Each also requires a viewpoint selection strategy,
which we leave unspecified, since our primary focus will be
on comparing different object/viewpoint models.

Bayesian algorithm (A) with Object Models: In this
case, we require a probability model for our image feature
representation of image I , fI given object o: P (fI |o). At
a given time-step t during test time, we are interested in
estimating Pt(o) = P (o|f test

δ1
, ...f test

δt
), that is, the probability

of each object given the images we have seen so far (writing
f test
δ for fItest

δ
). Assuming the images seen to be independent

samples from the object’s probability model, we can estimate
Pt(o) recursively using Bayes theorem:

Pt(o) =
P (f test

δt
|o)Pt−1(o)∑

o P (f test
δt
|o)Pt−1(o)

(1)

If we have no information prior to testing, setting P0(o) =
1/O is an appropriate initial distribution. This update mech-
anism can be combined with a number of next viewpoint
selection strategies, and we discuss our choice of the latter in
the experimentation. A possible stopping criteria is to cease
capturing further views when max(Pt(o)) > τ , where τ is
a threshold parameter, and output o? = argmax(Pt(o)).

Bayesian algorithm (B) with Object/Viewpoint Models:
Algorithm A above assumes that the images we view at



test time are generated independently given the test object
o. In general, this will not be the case, since we expect
there to be high correlations between the images we see
at particular viewpoints. We can build this information
into our approach by using separate probability models for
each object/viewpoint combination: P (f |o, θ). Now we are
interested in estimating at each time-step t a distribution
Pt(o, θ) = P (o, θ|f test

δ1
, ...f test

δt
), where we denote by Pt(o, θ)

the probability at time-step t that the test object is o and the
viewpoint at the reference test angle δ1 = 0◦ corresponds
to training view θ. Again, we can estimate this distribution
recursively:

Pt(o, θ) =
P (f test

δt
|o, θ + δt)Pt−1(o, θ)∑

o P (f test
δt
|o, θ + δt)Pt−1(o, θ)

(2)

where we note that the offsets δt are required to select the
correct likelihood models to combine at time-step t. As in
method A, a uniform prior can be selected for P0(o, θ), and
we leave discussion of the next viewpoint selection strategy
until the experimentation. If we are primarily interested in
identifying the correct test object, we can further calculate:

Pt(o) =
∑
θ

Pt(o, θ) (3)

at each time step, and again stop when max(Pt(o)) > τ , out-
putting o? = argmax(Pt(o)) and θ? = argmaxθ(Pt(o?, θ)).

IV. PROBABILISTIC OBJECTS AND VIEWPOINT MODELS

We outline below a number of possible models that can
be used for the likelihoods in Eqs. 1 and 2. We discuss
three kinds of model, which incorporate increasing levels of
structure. We are particularly interested in identifying objects
which may be occluded at test time, as will be explored in the
experimentation, and the final two options below explicitly
build this into the generative model.

A. Independent Features

For our first likelihood model, we assume that we have
access to a preprocessing method to extract a sparse set
of visual words from each training/test image (as noted
in the experimentation, we will use a vocabulary tree for
this purpose). Letting N = {1...N} be the set of all
visual words (the dictionary), and assuming initially for
convenience all images contain the same number of words,
M , we can represent training image Itrain

o,θ by the vector
f ind
o,θ ∈ NM , where the ordering of entries in f ind

o,θ is generated
by assuming a fixed strategy, such as top-left to bottom-
right. For algorithm A above, we can estimate the per-
object distribution for individual features based on whether
we observe an individual feature associated with an object
during training:

P (n|o) ∝ pa[(
∑
θ,m

f ind
o,θ (m) = n) = 0] +

pb[(
∑
θ,m

f ind
o,θ (m) = n) > 0] (4)

where n ∈ N is a particular visual word, [.] = 1 for a
true condition and 0 otherwise (the Iverson bracket), and
pa and pb are parameters of the distribution controlling
the probabilities when that node n is not seen and is seen
respectively (which relate to the po and pno parameters in
[12]). The likelihood for a test image with features f ind is
then formed simply by treating all observed visual words as
independent draws from Eq. 4:

P (f ind|o) =
∏

m=1...M

P (f ind(m)|o). (5)

An object viewpoint model for algorithm B can be formed
similarly by storing P (n|o, θ) for each combination (remov-
ing the summations across θ in Eq. 4), and using these to
form P (f ind|o, θ) similarly to Eq. 5. Finally, we note that,
although we assume each image to contain M features, we
can simply build a dependence on M into Eq. 5: P (f ind|o) =
P (Mf ind |o)

∏
m=1...M

f ind
P (f ind(m)|o), where Mf ind is the

length of f ind. If we assume P (Mf ind |o) to be uniform within
certain bounds (e.g. always between 10-1000 features) these
factors will cancel in the Bayesian updates.

B. Binary Model

The independent features model above does not represent
geometric structure in any way, and as such is susceptible to
noise. This will especially be a problem in our experimental
setup, in which we are interested in recognizing objects
amongst clutter. We thus present here a simple likelihood
model which embeds a notion of geometric structure. Again,
we assume we have access to a preprocessed representation
of each image containing as a sparse set of visual words
in N . We will also assume we have access to a geometric
matching method which, for two images, generates a set of
visual word correspondences for each of a set of geometric
transformations, t ∈ T = {1...T} (which we assume to
be discretized). In particular, we will use a Hough voting
method similar to that described in [7]. As an illustration of
how this works, consider the case that our transformations
contain only x-y translations, tx, and we denote the visual
words from image 1 and 2 as n1

1...M and n2
1...M respectively,

with (x, y) co-ordinates x1
1...M and x2

1...M . For each pair
of matching words across images such that n1

m1
= n2

m2
, a

vote is added to the transformation tx2
m2
−x1

m1
. The visual

word correspondences for a given transformation are then
all those pairs that voted for that transformation, and we can
write Ht(I1, I2) for the number of votes for transformation t
between images I1 and I2. Although we considered only x-y
translations above, the same scheme can incorporate scaling
and rotation transformations if we store this information with
the visual word representation (as for example when using
quantized SIFT features).

With these preliminaries, for the case of a binary model
with algorithm A, we set fbin to be a binary indicator vector,
fbin ∈ BO, where B = {0, 1}, and we have |fbin| = 1 (i.e.
there is a single 1, and O − 1 0’s). The position of the 1
in fbin indicates the object model with the highest number
of matching words after applying the chosen geometric



matching procedure. Explicitly, denoting by Ho,θ(I) the
maximum number of matches for a transformation between
image I and training image Itrain

o,θ , which in the case of the
Hough method above is Ho,θ(I) = maxtHt(I, Itrain

o,θ ), we
can write:

fbin
I (o) =

{
1 if o = argmaxo′ argmaxθHo′,θ(I)
0 otherwise

(6)

where ties are broken arbitrarily. Our likelihood model then
assumes a simple form depending on a single parameter, pc:

P (fbin|o) = pc[f(o) = 1] + ((1− pc)/(O − 1))[f(o) = 0] (7)

That is, we assume an object o generates a binary vector
with fbin(o) = 1 with probability pc, and a vector with a 1
positioned elsewhere with probability 1−pc, this probability
being divided evenly between the O − 1 other cases.

A similar likelihood model can be formed for algorithm
B. Here, let fbin = (fbin,obj, fbin,pose), fbin,obj ∈ BO,
fbin,pose ∈ BP . Then, we set fbin,obj(o) similarly to Eq.
6 and:

fbin,pose
I (θ) =

{
1 if θ = argmaxθ′ argmaxoHo,θ′(I)
0 otherwise

(8)

The likelihood model is then:

P (fbin|o, θ) = pc[fbin,obj(o) = 1 ∧ fbin,pose(θ) = 1] +
((1− pc)/(O · P − 1))[fbin,obj(o) = 0 ∨
fbin,pose(θ) = 0] (9)

C. Occlusion Model

Although the model above incorporates geometric struc-
ture, it looses a large amount of information such as the
number of matched and unmatched points as well as the
extent of the background/clutter by projecting onto a binary
feature vector. As a final model, we propose a likelihood
function which more explicitly models the generative process
of occluded test images. Here, we take focc to include the
visual word indices as in the independent model, along with
the discretized position and possibly scaling and rotation
information of each word as required by the geometric
matching process. For example, considering translation only,
if we represent by X the set of all possible image positions,
we let focc ∈ (N×X )M (where the ordering of vector entries
is arbitrary). We begin by outlining the object/viewpoint
model for algorithm B, before mentioning how it is adapted
for algorithm A.

Here, we will explicitly include transformation t as dis-
cussed above into the generative process. That is, for a given
test image, t will be a latent variable. Further, we introduce a
second set of latent variables αo,θ ∈ BMo,θ , which represent
occlusion maps for each of the training object/viewpoint
images, where Mo,θ is the number of visual words in the
training image for o and θ, and αo,θ(m) = 1 implies that
word m is visible in the test image, and 0 implies it is not.

We then propose the likelihood model:

P (focc|o, θ) =
∑
t,αo,θ

P (t)P (αo,θ)P (focc|o, θ, t, αo,θ)

(10)

Here, we may take a uniform distribution for P (t), and
simply characterize P (αo,θ) as:

P (αo,θ) =
∏

m=1...Mo,θ

(αo,θpd + (1− αo,θ)(1− pd)) (11)

where pd is a general probability that a word is visible
(which can be set from the rate of occlusion). Given test
image representation focc, object/viewpoint hypothesis o, θ
and transformation t, we can construct a subset of matching
visual words in the test image that are potential matches
of training words, M(focc|o, θ, t) ⊂ {1...M}, which match
in terms of visual word, and are transformed consistently
according to t. For instance, for the Hough matching pro-
cedure described earlier, M(focc|o, θ, t) contains all visual-
word/location pairs in focc which voted for transformation t
when matched with training image Itrain

o,θ . Only these visual
words can be un-occluded. The remaining words must be
generated by the background distribution, which we take to
be uniform pe = 1/(N |X |):

P (focc|o, θ, t, αo,θ) =∏
m=1...M

([αo,θ(m) = 1][m ∈M(focc|o, θ, t)] +

[αo,θ(m) = 0]pe) (12)

To avoid summing across all possible transformations in
Eq. 10, we instead make the following approximation:

P (focc|o, θ) ≈ P̃ (focc|o, θ)
= κo,θ max

t

∑
αo,θ

P (αo,θ)P (focc|o, θ, t, αo,θ)

(13)

where κo,θ is a normalizing constant. This approximation
implicitly assumes the likelihood is always highly peaked
around the t? achieving the maximum in Eq. 13.1 If this is
the case, κo,θ ≈ 1 for all (o, θ) and can be ignored. Also,
assuming pd > 0.5 and pd > pe, the maximization over t
can be achieved by using the Hough transform [7]. Collecting
terms, we can therefore further simplify the likelihood model
to:

P (focc|o, θ) ≈ (pd + (1− pd)pe)Ho,θ(f
occ) ·

(1− pd)Mo,θ−Ho,θ(focc)p
M−Ho,θ(focc)
e

(14)

writing Ho,θ(focc) for Ho,θ(I) as introduced in Sec. IV-
B, where focc = fI . As in the independent features

1This assumption can be empirically tested. For our experimental set
up, we tested it by plotting P (focc|o, θ) for a large number of test
images and (o, θ) combinations. The distributions were sharply unimodal
in approximately 0.9 of the cases.



model, we can explicitly alter Eq. 14 to allow for a vari-
able number of test features by letting P̃ (focc|o, θ) =
P (Mfocc |o)P̃ (focc|o, θ,Mfocc), where P̃ (focc|o, θ,Mfocc) is
as in Eq. 14, but with Mfocc substituted for M . Again for a
uniform P (Mfocc |o) this does not affect the updates in Sec.
III.

Finally, we can define an object likelihood for algorithm
A in Sec. III by incorporating a further maximization across
θ:

P (focc|o) ∝ max
θ
P̃ (focc|o, θ) (15)

which can be evaluated as in Eq. 14 where θ is replaced by
θ? = argmaxθ′ Ho,θ′(focc).

V. EXPERIMENTS

A. Dataset

For our experiments, we use the active recognition dataset
introduced by [12]. The training data consists of everyday
objects such as cereal boxes, ornaments, spice bottle etc.
Images were captured every 20 degrees for each object
against a plain background on a turntable using a Prosilica
GE1900C camera. This means that there were 18 training
images captured for each object in the database. For the
test set, the same objects used in the training data were
captured at every 20 degrees in a cluttered environment
with significant occlusion by other objects in the dataset.
For both training and test data, images are captured around
the y-axis, which represents 1 degree-of-freedom (DoF). For
our experiments, we choose a subset of 10 objects from the
dataset for both testing and training, with minimal overlap
between the learned and occluding objects. An example
image from the test set is displayed in Figure 1.

B. Preprocessing using Vocabulary Tree

For our visual word representation, we use a vocabulary
tree [11] learned in an unsupervised manner from SIFT
features detected at interest points across all training images
[10]. This is the same representation as used in [12].

The vocabulary tree is constructed using hierarchical k-
means clustering where similar features are clustered to-
gether. k defines the number of children of each node of
the tree. Initially, for the root of the tree, all the training
data is grouped into k clusters. The training data is then
used to construct k groups, where each group consists of
SIFT descriptors closest to a particular cluster centre. This
process is recursively applied to each group up to some depth
D.

We use the leaf nodes of the vocabulary tree as our
dictionary of visual words, N . In addition, as in [12], we
use statistics from the vocabulary tree to fix the active
recognition update strategy used in our experiments. For
each node in the tree a TFIDF-like (Term Frequency Inverse
Document Frequency) metric is calculated to capture the
node’s uniqueness, wi = ln(M/Mi), where M is the total
number of images in the database and Mi is the number
images in the database with at least one feature that passes
through node i. The weightings for all nodes passed through

by the features of a given training image are summed to
generate the ‘viewpoint weighting’ of the image. We use
these weightings at each step of the algorithm to select the
next best view. We use the number of matches returned from
the Hough geometric matching method described in Sec.
IV-B to select the best matching pose for each object at a
given time-step. We then align the weightings for each object
based these best pose guesses. We then select the δ which
achieves the best viewpoint weighting score averaged across
all objects (disregarding views already visited).

C. Parameter setting
Our threshold for recognition τ , as in Sec. III is set to

0.8. We set pa and pb in Sec. IV-A to 1 and 2 respectively,
similarly to [12]. The parameter pc in Sec. IV-B is set to
0.7 so that we see at least 2 viewpoints before reaching
τ and making a decision. The parameter pd in Sec. IV-
C is set to 0.9, which corresponds roughly to the inverse
of the proportion of occluded pixels in the test images,
and pe = 1/(N |X |) as discussed. We tested neighboring
parameter values, and found the given values to perform best,
with robustness across a large range of values.

D. Hough Transform implementation
We implemented the Hough Transform geometric match-

ing method as described in Sec. IV-B, with two minor
differences. First, our set of transformations includes not only
translations, but also scalings and rotations. We discretize the
transformations into 32 bins each for x and y translations,
5 bins for scale and 12 bins for rotation. Second, we form
the matched pairs (which each cast a vote) by thresholding
the Euclidean distances between SIFT descriptors (as in
[10]), rather than identifying features associated with the
same visual word from the vocabulary tree. This alleviates
quantization effects that may be introduced by using matched
code-words.

E. Results
We first tested the independent feature model with algo-

rithm A, giving a recognition accuracy of 20%. This low
performance was expected given that this model doesn’t
distinguish between the foreground and the background or
occlusions (one object and no poses were identified with
algorithm B).

We then tested the following probability models:
• Govender et. al.: This method was presented in [12]

which also uses a vocabulary structure to weight object
features

• Object Models with binary model (Binary Model A)
• Object Models with occlusion model (Occlusion Model

A)
• Object & Viewpoint model with binary model (Binary

Model B)
• Object & Viewpoint model with occlusion model (Oc-

clusion Model B)
A confusion matrix was generated for each model. We

show the confusion matrix generated for the binary method
A in Table I.



Fig. 1. Examples of the test images used

TABLE I
CONFUSION MATRIX FOR BINARY A MODEL

Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured Obscured
Cereal Battery Curry box Elephant Handbag MrMin Salad Bottle Spice Bottle Spray Can Spray Can 1

Cereal 0.9800 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
Battery 0.0022 0.9800 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

Curry box 0.0021 0.0447 0.9383 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021
Elephant 0.0022 0.0022 0.0022 0.9800 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
Handbag 0.0022 0.0022 0.0022 0.0022 0.9800 0.0022 0.0022 0.0022 0.0022 0.0022
Mr Min 0.0022 0.0022 0.0022 0.0022 0.0022 0.9800 0.0022 0.0022 0.0022 0.0022

Salad Bottle 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.9800 0.0022 0.0022 0.0022
Spice Bottle 0.0412 0.0412 0.8647 0.0020 0.0020 0.0020 0.0020 0.0412 0.0020 0.0020
Spray Can 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.9800 0.0022

Spray Can 1 0.0429 0.0020 0.0020 0.0020 0.0020 0.0020 0.9000 0.0020 0.0020 0.0429

TABLE II
OBJECT RECOGNITION RESULTS FOR ALL METHODS

Recognition rate Sum of Diagonal Time(s)
Govender et. al. [12] 80% 7.56 404.5

Binary Model A 80% 7.88 448.7
Binary Model B 80% 7.8 1673

Occlusion model A 100% 9.99 240.6
Occlusion model B 100% 10 238.7

The output probabilties for each test object were placed
in the respective rows with the diagonal representing the
agreement between the true and estimated objects. It achieves
a recognition accuracy of 8 out 10 objects. The recognition
results for all the methods are presented in Table II.

Occlusion models 1 and 2 recognise all the objects cor-
rectly in this challenging dataset. The binary models, along
with the method of [12] only recognise 8 out of the 10 objects
correctly. Both methods fail to recognise the same objects
i.e. the spice bottle and one of the spray can objects. Both
these objects are relatively small with fewer features and are
significantly occluded in the test images.

We also ran experiments using the binary and occlusion
models to recognise the object as well the pose of the test
images (to within 20◦). The results are displayed below in
Table III.

The occlusion model produces the best results. It correctly

TABLE III
OBJECT AND POSE RECOGNITION FOR BINARY AND OCCLUSION B

Recognition rate Sum of Diagonal Pose
Binary Model B 90% 7.8 70%

Occlusion model B 100% 10 90%

recognises all objects in the database and is also the fastest
method. Given that the occlusion model recognises all the
objects in the database, we can conclude that it is important
to take into account the object as well as the background
features, as well as explicitly model the geometric transfor-
mation and occlusion of features. Pose estimation accuracy
refers to the system accurately predicting the correct pose of
the test objects. Again, the occlusion model performs best,
identifying 9 poses to within 20◦.

VI. CONCLUSIONS

We presented several Bayesian approaches to active object
recognition which allowed information across several view-
points to be intergrated in a principled manner and provide
a quantatative value as to the system’s confidence in the
object’s identity and pose. Our test set consisted of ten ob-
jects appearing in cluttered environments with occlusion. The
vocabulary tree data structure used to generate the feature
statistics can easily incorporate more objects with little or
no additional computational complexity. The probabilistic



object and viewpoint models created were explicitly designed
to cope with such a difficult enviroment. All the models
presented achieve excellent results given the challenging
dataset. We have shown that using a model which incorpo-
rates transformation and occlusion latent variables, as well
as incorporating both object and background distributions
provides the best result (correctly recognises all the objects)
for 3D object recogntion using our method.
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