
Using colour features for video-based tracking of people in a multi-camera
environment

Mathew Price, Fred Nicolls, Gerhard de Jager

Department of Electrical Engineering
University of Cape Town

Rondebosch 7701, South Africa
mathew@dip.ee.uct.ac.za

Abstract
This paper provides a brief overview of ongoing work towards
the realisation of a multi-camera video-based person tracking
system. The developing system is orientated towards a dis-
tributed architecture for sharing visual information between
multiple cameras. A hierarchical method for modelling peo-
ple in scenes using colour features is proposed, however, future
development will also look at including other useful measures
such as texture. The method uses a kernel-based classification
implementation to track a base set of visual components which
can then be grouped to form high-level object descriptors. Some
results are shown for a Kernel Adatron implementation of the
classifier.

1. Introduction
Computer aided surveillance has been a developing area in com-
puter vision circles for some time. With the increase in com-
puter processing speeds and memory sizes, much past research
is starting to have useful applications now that near real-time
implementations are realisable.

This project has been primarily aimed at the global prob-
lem of tracking several people, simultaneously, through a multi-
camera environment. Thus, in addition to dealing with single-
view occlusions and scene changes, the system needs to be
able to detect object movement between multiple camera views,
which may, or may not, be overlapped. The problem faced is
one that requires a system capable of coordinating data among
several distributed resources in a manner that can be tied in with
current computer vision methods.

Focus has been aimed at using colour as the chief reference
to distinguish people and objects as they traverse the environ-
ment. It is envisioned that further features may prove useful in
addition to colour, such as texture and shape descriptors[7][5].
However, for simplicity and speed in the initial implementation,
these have been omitted.

There are two ways of looking at a visual tracking sys-
tem: Estimation and Classification. If we have a near real-time
stream of image samples from an initialised target, estimation
can be used to track the target’s position by exploiting statistical
relationships of the target’s motion. This process works as long
as the measurement data is reliable and the object can be clearly
located at each step. In the case where this condition is not met,
the estimator’s accuracy will degrade until the target has been
lost, thereby requiring a full re-initialisation of the system.

This drawback leads to the idea of creating a complemen-
tary system, using a classification scheme, to deal with these un-
stable cases. In this way, it was hoped that a symbioses could be

developed where the estimator (while tracking correctly) would
provide a stable set of measurements which could be used to
generate a set of online features for training a neural network.
Conversely, should the estimator reach an unstable state, a clas-
sifier could then determine the correct position of the target and
thus automatically re-initialise the estimator’s model parame-
ters. Ultimately, this would enable the system to deal with
events such as occlusion, video transmission breaks and tran-
sitions between multiple camera views.

The following sections describe a distributed classification
system capable of tracking colour components belonging to
moving objects and persons. Operation proceeds by breaking
a scene into unimodal colour components which are then clas-
sified into temporary object classes using an online kernel ada-
tron. The final stage involves refining the allocation of classified
colours to their respective objects based on group and spatial
dependencies, though this stage has not been completely imple-
mented as yet.

2. System Overview
A basic premise of the system is that data should be hierarchi-
cally divided so that different levels of information can be pro-
cessed appropriately (Figure 1). In this application, our lowest
data level is the video input from the camera network.

Figure 1: System Data Flow Diagram.

The first level of processing involves repetitive, au-
tonomous tasks such as noise filtering, colour transformations
and smoothing. Following this, the data enters the low-level
processing level, where visual feature detection takes place (i.e.
colour/texture). These visual features are extracted using colour

39



segmentation, and tracked using a neural network classification
technique.

Once reliable visual features are available, construction of
high-level descriptors of foreground objects is possible. These
descriptors consist of combinations of the low-level visual fea-
tures and can then be shared through the distributed processing
system.

3. Feature Extraction
Extracting good features is probably the most critical task.
While it is relatively simple to take a variety of measurements
from images, it is imperative that one ensures that the feature
measurements are both repeatable and comparable (i.e. the fea-
ture space is consistent and uniform).

Since the thrust of the project is to exploit the colour rela-
tionships of targets, a reliable chromatic measurement system is
required. It was found that a convenient method for extracting
colour, was to use CIE Lab colour co-ordinates which preserve
perceptual uniformity.

Uniformity in the colour space refers to the property that
standard distance measures (i.e. Euclidean) are proportional to
the change in perceived colour. Owing to the fact that the neural
network uses radial basis functions for its kernels, this unifor-
mity becomes very useful when discriminating between colour
clusters, since a translation in feature space relates directly to
a change in perceived colour. This gives the system a human-
like ability to distinguish colours. It is of course also possible to
create an arbitrary colour space aimed at maximising colour dis-
crimination, however, this discrimination will only be as good
as the training set, and may not necessarily preserve uniformity.

Figure 2: CIE Lab Colour Space.

The CIE Lab space (Figure 2) consists of two colour axes
and a luminance L or brightness axis. The a values range from
red to green, while the b values describe blue to yellow. The
configuration is similar to the HSV colour space, though the
Lab space is spherical and the co-ordinates, being rectangular,
allow the Euclidean distance between points to be relative to the
difference in colour. A disadvantage is its costly transformation.

Initially, during training, a motion segmented image is use-
ful for isolating moving objects which need classification. How-
ever, once enough observations have been made, it is possible
to switch back to classifying unsegmented images, which would
decrease classification errors due to bad segmentation.

3.1. Colour Segmentation

Apart from motion segmentation, a colour segmentation scheme
is required to generate a list of blobs and scene colours. This
allows the object colours to be represented as features while
retaining the spatial information (unlike histogram methods).

Various connected-region labelling algorithms have been
tested (recursive region growing among others), however, pyra-

mid segmentation[6] has provided the most promising results in
terms of speed and quality.

The input image is down-sampled by a defined number of
levels by means of Gaussian pyramid decomposition[2]. The
pyramid is then built upwards (to the largest image), establish-
ing links between a pixel on the current level and its candidate
father on the adjacent level, if certain thresholds are met[6]. In
this case, the thresholds are distances between pixel colour co-
ordinates which in terms of CIE Lab space relates to closeness
in perceived colour.

The output of the pyramid segmentation method (Figure 3)
is then processed into a list of image regions (connected com-
ponents), each representing a unimodal colour cluster in the im-
age. The CIE Lab co-ordinates of these clusters are then used
as features to train a neural network which can then classify
future image regions into a basic colour set. Several clusters
in this set can then be combined, by exploiting neighbourhood
information, to form a high-level person/object descriptors.

Figure 3: Pyramid Colour Segmentation.

4. Neural Network
As described previously, the base function of the system con-
sists of being able to correctly identify the set of target colour
clusters between observations. The classification process en-
tails providing a probability comparison between the set of tar-
get colours and the visible colour components in the latest im-
age. Since the feature data is generated by selecting Gaussian
colour clusters, a Gaussian kernel-based probabilistic network
seemed the logical choice.

4.1. Kernel Adatron

Several classification techniques could be easily applied to this
model, and one could argue that a simple K-Nearest Neighbour
classifier could easily do the job. The selection of the Kernel
Adatron in particular is based on the overall needs of the system.
Firstly, each model needs to be easily structured for global syn-
chronisation with network storage nodes. Secondly, a degree of
compactness is required both for speed in classification/updates
and in storage. Finally, since observed data may often fall near
the edge of the cluster group misclassification could cause in-
valid updates to be made, thus causing the system reliability to
degrade.

The kernel adatron (KA) is a simple implementation of a
support vector machine, which allows maximisation of the mar-
gin in the feature space, thus forming a non-linear decision
boundary in the input space[8]. Effectively, this provides an
optimal decision boundary between classes. In the implementa-
tion, two target classes are represented by positive and negative
unit Gaussians respectively. This allows a classification process
to simply sum the Gaussian weights and classify between the
two classes by the sign of the resulting probability (+1; -1). Fig-

40



Figure 4: Kernel Adatron example for 2-dimension features

ure 4 shows an example of a constructed KA. The positive peak
identifies the current target class, while the negative peaks show
other classes. Regions where the graph is zero are unclassified.

The largest difference between the KA method as opposed
to the PNN (Probability Neural Network) is that, during train-
ing, the KA assigns and updates a set of importance weights (α)
which identify how close each kernel is to the decision bound-
ary (support vectors). The primary advantage to our application
here is that kernels with very small alpha values are not impor-
tant to decision making and can therefore be discarded for clas-
sification. This results in a pseudo-compression scheme for the
feature vectors, which constrains the models to a finite size and
therefore limits the load of the network. Effectively, the com-
pression works in a similar manner to an adaptive averaging fil-
ter, with the advantage that previous features are not necessarily
averaged by time but rather by importance to classification.

4.1.1. Implementation

One of the features of the Kernel Adatron is that it is ex-
tremely easy to implement since it relies on only a few matrix
operations. This implementation is extended from course
literature by Green J. (Soft Computing 1999, UCT Press)
which summarises theory presented in [8].

XT — (m x n) matrix of m input features (rows) with
n dimensions (cols).
T — (m x n) matrix of target values for n classes, each having
m features.
A — (m x n) matrix of alpha values for n classes, each having
m features.

The XT matrix is a maintained set of features which de-
termine the characteristics of each kernel. T assigns the
target values for each feature vector. Columns in the T
matrix represent each class, while row values identify whether
the respective feature belongs (+1) or does not belong (-1)
to the class. A typical target column will contain at least
one +1 value. The A matrix has identical dimensions (and
representative form) to the T matrix, but instead maintains the
α weights (decision importance) for each feature (row) in the
XT matrix. If only one feature per class is stipulated, the A
and T matrices become square.

4.1.2. Training:

For brevity the calculation of Euclidean distance between the
input vectors has been omitted and the operation d2(x1, x2) is
defined as the squared Euclidean distance between the elements
of x1 and x2. The operation returns a symmetric matrix. For

reference see the implementation of dist2 in the Netlab Matlab
toolbox (Bishop and Nabney 1997).

Training proceeds in the following manner (referenced
equations are defined below):

1. Calculate squared Euclidean distance matrix (Eqn 1)

2. Activate Gaussian kernels (Eqn 2)

While less than i iterations AND m < 0.99 DO:

3. Calculate signed and weighted kernels (Eqn 3)

4. Update α values based on learning rate η (Eqn 4)

5. Calculate margin - distance from decision boundary to
nearest point (Eqn 5).

D = d2(XT , XT ) (1)

K = e−1/(2σ).D (2)

While less than i iterations AND m < 0.99

Z = K.A.T (3)

δA = η(1 − Z.T ) (4)

m = 0.5
(
min(Z+) − max(Z−)

)
(5)

4.1.3. Classification:

The classification procedure is identical to training steps 1
through 3 except that the distance matrix is now calculated be-
tween X and XT , where X are the features to be classified.

4.1.4. Update:

Updating is simply a selection process where features classi-
fied positively in a class and meeting a similarity threshold are
updated. In addition, features which were unclassified (sum of
kernels = 0) and are significantly different from all other classes
are appended to the XT matrix. This addition obviously in-
cludes initialised updates to the A and T matrices as well.

5. Object Models
Once a reliable set of classified colour components is available,
more complex grouping of the components can be used to cre-
ate high-level visual object/person descriptors. Since several
objects can share similar colours and since not all colours may
always be visible, these descriptors cannot be represented by a
combined feature vector.

One idea is to use a voting system where each object votes
for a component based on basic region measurements, such as
aspect ratio and relative magnitude, as well as its neighbour-
ing colour relationships. Superposition of several separate deci-
sions combined with the component’s classification probability
can then provide a comparative measure, indicating to which
object model a colour component belongs.

6. Results and Discussion
Colour component tracking by means of kernel-based classifi-
cation has proved to be a highly effective method for locating
characteristic regions of both people and objects. The current

41



implementation is capable of allowing a user to interactively se-
lect several target colours to be tracked. Naturally this process
can be automated to build models based on segmented or pro-
cessed images. Figure 5 shows two examples where a shirt and
a box have been selected for classification, though still images
are not an ideal demonstration medium.

Figure 5: Classification using unsegmented scene

As seen in the right-hand image, errors can occur in classi-
fication when the target colour is visible in more than one place.
Once the voting scheme has been completed, these outliers can
be eliminated. Also note that not all colours available on each
object were added to the model, thereby causing only a few
pieces to be classified.

Currently several camera servers allow images to be trans-
mitted to a processing client over a 100 Mbps LAN during test-
ing. Input frame rate varies between 5 and 15 fps depending
on network load. Processing involving feature extraction and
classification operates at an average of approximately 4 fps on
a 320 x 240 unsegmented colour image processed on a Pentium
III 450 MHz (though not all processes have been optimised yet).
Pyramid colour segmentation is performed using a CIE Lab im-
age as the input. It was found that a threshold of between 8
and 15 for pyramid linking (See Section 3.1) yielded reason-
able colour groupings.

Improved performance can be attained by using a motion
segmented image as the input (Figure 5 shows an example).
This reduces the processing required during pyramid colour
segmentation (less pixels to process) and reduces the number
of classifications necessary. In general, unsegmented input is
only useful for scenes where continual environmental changes
make segmentation unfeasible (e.g. reflective materials). On
the other hand, the flexibility of the system to operate on either
type of input may prove useful in applications such as tracking
using a Pan Tilt Zoom or mobile camera.

Figure 6: Classification using motion segmented scene

6.1. Issues to be resolved

One problem, currently being addressed, is that non-chromatic
or large chromatic regions can make an exact target identifica-
tion difficult. Generally, colours which are common to too many

objects will cause ambiguity when used in object descriptors.
A solution is to identify these colour components (by other fea-
tures) and filter them out from further decision processes, not
unlike removing a DC component from an electrical signal.

Another key issue is colour consistency between different
cameras. Since the entire goal of the system is to be able to cor-
rectly identify targets between multiple views, this can be ex-
ceedingly complex when colour measurements from two cam-
eras are decidedly different for the same object. In addition,
not only will each camera present a varied representation of the
same scene, but it is unlikely for them to be orientated iden-
tically, and therefore the environment’s lighting configuration
could also affect the way the camera perceives objects.

Testing has shown that certain vibrant colours are usually
detected between views, even without correction. In the general
case, however, a calibration scheme will be needed to ensure
that colour features match between views. Several automatic
methods have been reviewed which are aimed at providing
colour constancy[1], based on certain assumptions (e.g. Lam-
bertian reflectance), and independence from device gamma[3].
Most of these methods are aimed at offline processing for image
retrieval systems and are therefore not well suited to real-time
multi-camera environments. So far, the most promising solu-
tion seems to be to use a colour calibration object in order to
determine a linear transformation between the cameras[4].

7. Conclusions

In conclusion, a realisable multi-camera implementation based
on a distributed paradigm should prove to be a solid foundation
for data exchange and synchronisation.

Approaching the tracking problem from a classification
viewpoint in order to complement conventional tracking meth-
ods may prove a viable way of attaining a more robust person
tracking system.

Using CIE Lab colour features allows good comparison in
feature space. At present, pyramid segmentation shows the
most promise in providing a breakdown of colour components
both in terms of speed and quality.

A kernel-based classification approach was favoured since
the features are already grouped in a unimodal fashion. The
Kernel Adatron Support Vector Machine implementation is a
simple method that ensures optimum classification while also
shedding redundant features and allowing a compact class rep-
resentation.

Although the present implementation can correctly iden-
tify targets between different cameras, the accuracy depends on
lighting conditions and the perspective viewing angle of each
camera. For this reason a more robust colour calibration method
is needed to ensure colour constancy between multiple camera
views.

Finally, a large benefit is that the system can classify targets
without a motion segmented image, thereby extending its appli-
cation to other areas including: identifying targets or locations
with mobile cameras; and tracking targets with a Pan Tilt Zoom
camera.

8. Acknowledgements

Many thanks to TSS Technology, De Beers and the NRF for
their continued support of this research.

42



9. References
[1] Rizzi A., Gatta C., and Marini D. A new algorithm for

unsupervised global and local color correction. Pattern
Recognition Letters, 24(11):1663–1677, 2003.

[2] Jahne B. Digital Image Processing. Springer, New York,
1997.

[3] Finlayson G. and Xu R. Illuminant and gamma comprehen-
sive normalisation in log rgb space. Pattern Recognition
Letters, 24(11):1679–1690, 2003.

[4] Austermeier H., Hartmann G., and Hilker R. Color-
calibration of a robot vision system using self-organizing
feature maps. ICANN, pages 257–262, 1996.

[5] Haritaoglu I., Cutler R., Harwood D, and Davis L. S. Detec-
tion of people carrying objects using silhouettes. Technical
report, Computer Vision Laboratory, University of Mary-
land.

[6] Burt P. J., Hong T. H., and Rosenfeld A. Segmentation
and estimation of image region properties through coop-
erative hierarchical computation. IEEE Tran. On SMC,
11(12):802–809, 1981.

[7] McKenna S. J., Jabri S., Duric Z., Rosenfeld A., and Wech-
sler H. Tracking groups of people. Computer Vision and
Image Understanding, 80:42–56, 2000.

[8] Friess T., Cristianini N., and Campbell C. The kernel-
adatron algorithm: a fast and simple learning procedure for
support vector machines. In 15th International Conference
on Machine Learning, 1998.

Copyright De Beers 2003 All rights reserved. No part of
this document may be reproduced, translated, stored in any re-
trieval system, or transmitted in any form or medium, without
written permission by the owner.

43


