
ACCELERATED SPARSE FEATURE CORRESPONDENCE RESOLUTION
USING LOOPY BELIEF PROPAGATION WITH MRF CLIQUE BASED

STRUCTURE PRESERVATION
Markus Louw Fred Nicolls

Department of Electrical Engineering
University of Cape Town

South Africa
email: markus.louw@gmail.com

ABSTRACT
In this paper we extend the work of (Louw and Nicolls,
2007) which proposed a novel Markov Random Field
formulation for resolving sparse features correspondences
in image pairs. The MRF terms can include cliques
of variable sizes, and the energies are minimized using
Loopy Belief Propagation. In this paper, an improved
MRF topology is developed which uses a variant of the
previously developed KN-means algorithm (where each
mean has a specified number of neighbours). The message
passing schedule is an accelerated one which converges
faster than the usual parallel message update schedule, and
surprisingly, often gives better correspondence results. The
method is compared to other state of the art sparse feature
correspondence algorithms and shown to compare well.
Outliers are handled naturally within this paradigm.
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1 Introduction and literature review

The goal of sparse stereo correspondence is to match each
feature point in a source image to its corresponding feature
point in a second image. We encounter this problem in
a wide range of computer vision applications, e.g. scene
object recognition [1], target tracking (where points on
the target are tracked) and sparse 3D reconstruction [3].
Various assumptions can be made, just as within the dense
stereo matching paradigm, about the spatial relationships
between points in each set, and how these should affect the
matching process.

The usual initial step of doing a local patch correla-
tion to compare each source point to its candidates, and
assigning normalized probabilities for each point based on
this correlation, usually results in matching incompatibili-
ties (if the MAP candidate is chosen for each source point
), and ignores useful information about the relative orien-
tations and neighbourhood structures of the points or fea-
tures. The algorithm here described could be used for ini-

tialization of a dense stereo matcher, for biometric identifi-
cation, for surface or image (2D or 3D) registration, or even
for target tracking.
One of the first descriptions of the characteristics of a good
feature matching algorithm was given by Ullman [16],
where three principles for matching were given, viz. the
principles of similarity, proximity and exclusion (final cor-
respondences between source and target points must be one
to one). Some previous attempts at resolving these incom-
patibilities include the ”winner take all strategy” of [14],
the ”some winners take all” of [17], an SVD proximity ma-
trix approximation [12], and resolution by estimation of ap-
proximate affine transformations between matches in [5].
In [4], maximal cliques in a relational subgraph are estab-
lished, and in [9] a concave programming approach was
used. Iterative closest point algorithms [2], [7] are also fea-
ture matching algorithms.
In [8], a simple pairwise MRF based approach was de-
veloped and was shown to work well for sparse match-
ing on pre-rectified images, however the structure preser-
vation criterion was too simple and the structure of the
clique about any point could only be taken into account in-
directly in the MRF potential terms. Also in [8] an iterative
Bayesian algorithm based on the dense stereo formulation
of [11] was developed. Our algorithm is later compared to
both of these algorithms.
In [6] a more general MRF based structure criterion was
developed, in which the entire local clique structure about
local point means within the point set may be taken into ac-
count in the energy term. Almost any derived characteristic
of the structure may be used (interior angles, distance from
centroid, Gaussian curvature) as a term in the energy func-
tion of the clique’s candidate target points, which is then
(approximately) minimized by a Loopy Belief Propagation
algorithm.
In this paper we show how to improve the KN-means algo-
rithm for this application, how to adjust the parameters for
high-order MRF energy terms when calculating the factor
nodes, and how to implement an accelerated update sched-
ule for Loopy Belief Propagation using factor nodes, to
more rapidly minimize the energy for these higher order
MRF energy terms.
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2 Neighbours and candidates

We are given two point sets X1 and X2, in the first and
second images respectively. After we run the KN-means
algorithm on X1, we have K mean points. The ith such
mean has n(i) neighbours. For each jth point X1(j) in X1

we make a listC(j) of candidate points inX2 for that point.
The notation is overloaded in such a way that if C(j) refers
to candidate matches in X2 for point X1(j), and if there
are n(C(j)) number of candidate matches we may refer to
the kth such point as C(j, k). Similarly we want to refer to
the kth neighbour of meanK1(i) asNK(i, k). This scheme
is depicted in Fig. 1. To see a real example of feature

Figure 1. This figure shows the neighbourhood and candidate
schemes for X1 in the first image. The quadrilateral on the left is
the first image, containing four points, each labelled as X1(i) with
i = 1..4. The points are connected to a mean/factor node (joined
by thick lines). Each point’s candidates in the second image (the
quadrilateral on the right) are shown by a connection with a dotted

line.

points and their candidate points see Fig. 3, where lines are
shown between each source point and its candidate target
points. In Fig. 4 we see the means derived from the source
point set, and superimposed on the left image of the stereo
pair.

3 Markov random field potential energy in-
teractions for sparse feature correspon-
dence resolution

This framework can be used to resolve correspondences be-
tween sparse points on image pairs. In terms of a Markov
Random Field (MRF) energy function on the target index
assignments for points in X1, we can describe the joint
probability distribution over points and cliques of varying

Figure 2. This figure shows that a high number of means (factor

sizes as,

p(C|Y ) ∝
P∏

k=1

exp(−ψk(ck, yk)/σv
k)

K∏
i=1

exp(−φi(−→c )/σf
i )

(1)
where C refers to the correspondence labelling of each
point in X1, P is the number of points to be matched in
the first point set, Y is all the observation information on
the candidate match strengths for each point in X1, yk is
the candidate location and image information, ψk(ck, yk)
is the energy on a particular set of candidate matches for a
point, also known as the local evidence (in our case found
by a modified 2D window correlation matcher), K is the
number of factor node energy terms, φi(−→c ) is the energy
on a particular set of candidate matches for the neighbours
of factor node i.

The energy for a point match is given by

ψk(ck, yk) = s
(
X1(k), C(X1(k), ck))

)
(2)

where s(·, ·) is a matching function between points across
images, which returns a normalized probability for the like-
lihood of the match being correct. This measure only uses
relative distances: the squared error distances between each
neighbour and the current factor node location are aggre-
gated.

The distance based potential function for a set of can-
didate labels for a particular factor node is:

φi(−→c ) =
∑n(i)

j=1

(
|dist

(
X1(N(i, j),−→c (j)),Ki

)
− · · ·

dist
(
X2(C(N(i, j)),−→c (j)), Ri

)
|/σf

i

)
if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
z otherwise

       nodes) may be connected to the same point/feature set).
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Figure 3. Example of feature points (crosses) and their candi-

In the above equation, the argument vector of −→c in
φi(−→c ) is a vector of elements of target indices for
each neighbour of the ith factor node. E.g. if −→c =
[k l m .. z] is a parameter in φi(−→c ), this indicates
that point N(i, 1) is matched to C(N(i, 1), k), N(i, 2) is
matched to C(N(i, 1), l), and so on. The energy term for
the joint hypothesis over the clique about a factor node de-
pends on the specific candidate match hypothesis for each
factor node neighbour; dist(·,·) is a measure of the Eu-
clidean distance between the two points indexed by its ar-
guments. The meanRi is a mean which exists in the second
image, is calculated by taking the centroid of all the candi-
dates (as specified in −→c ) of the neighbours of factor node
i.
Ri must therefore be recalculated for each new set of candi-
date hypotheses. The z energy term is some small number
greater than zero. (We used z = 0.01. If z = 0, match pos-
sibilities are immediately excluded, and it converges incor-
rectly). We found it useful to check the contents of the fac-
tor nodes after calculation, since a bad choice of σf

i could
cause all the entries to be zero. If this is the case, σf

i should
be increased until it contains some non-zero values.
After convergence of the LBP algorithm, we have an a pos-
teriori estimate for p(C|Y ), from which we can take the
MAP label for each point as its correct candidate. To illus-
trate that we can use almost any structural characteristic us-
ing this framework, we show the following potential term
based on the angular change per neighbour candidate, as
one iterates through the neighbours of a factor node. First
define, for the ith factor node

nexti(j) = j + 1 if j + 1 < n(i) (3)
nexti(j) = 1 if j + 1 = n(i) (4)

Figure 4. In above images, the feature points are red and the
means/factor node locations are shown as white crosses. Black
lines connect the factor nodes to each of their neighbors. The
upper image (reference image) shows the image and point set with
42 means. The points must be matched to their candidates in the

if n(i) is the number of neighbours for the ith factor node.

φi(−→c ) =
∑n(i)

j=1

(
|θ
(
Ki, j, next(j))

)
− · · ·

θ
(
Ri, C(N(i, j)), C(N(i, next(j))))

)
|/σ
)

if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
z otherwise

where in this equation, θ is a function which returns the
difference in angles between the positive X axis through
the mean and each of the candidate points. This is depicted
in Fig. 5, where for example

θi(K1, X1, X2) = b− a
θi(R1, Y1, Y2) = x− w (5)

  dates (dots) superimposed on the first image of the image pair.

                              target (lower) image
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Figure 5. This figure shows the interior angles made by the factor
node and its neighbours in the first and second images from Fig.

3.1 Outliers

To include support for outliers algorithmically, we can add
an element to each vector of candidate probabilities which
represents the notion that that point has no corresponding
point in the target point set. We therefore modify equation
Eqn. to be

φi(−→c ) =

∑n(i)
j=1

(
|dist

(
X1(N(i, j),−→c (j)),Ki

)
− · · ·

dist
(
X2(C(N(i, j)),−→c (j)), Ri

)
|/σ
)

if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
and−→cj 6= outlier index

y if −→cj = outlier index
z otherwise

In the above equation, y and z are values close to zero.

4 Resolving sparse correspondences using
Loopy Belief Propagation with higher or-
der energy terms

We form a loopy Bayesian network, where the variable
nodes represent points in X1, and each point X1(i) is con-
nected to each of its neighbours in N(i). Each variable
node X1(i) takes on a state vector of probabilities with
the kth element in this state vector representing the prob-
ability of correct assignment/matching of point X1(j) to
point C(j, k) in X2. The state vector for each point node
is initialized with the normalized outputs a simple region
matcher (such as 2D window correlation).

The following equations express the parallel message
passing schedule for the Loopy Belief Propagation algo-
rithm using Factor nodes (taken approximately from [10]):

µx→f (x) = o(x)
∏
g 6=f

µg→x(x) (6)

µf→x(x) =
∑
u\x

f(u)
∏
y 6=x

µy→f (y) (7)

Where x, y are variable nodes, g, f are factor nodes,
µ(.) is a message vector from a variable to factor node or
vice versa, and o(x) is evidence on the variable node x. In a
Loopy Belief Propagation scheme, the above two equations
are iterated usually until convergence. In our experiments,
we used the max-product update algorithm.

4.1 Populating contents of Factor nodes

The factor node entries are populated such that entry ~c for
the ith factor node is given a value:

Fi(~c) = exp(−φi(−→c )/σf
i ) (8)

where ~c indicates the set of indices in the array, as well as
the vector of the current candidate for each of its neigh-
bouring variable nodes (feature points).

5 Stapled KN-means algorithm with re-
moval of duplicates

The MRF topology method we use necessitates a means
for finding optimal locations for the factor nodes, such that
each one has a specified number of neighbours (without
duplicate factor nodes with identical connectivity to the
same set of neighbours). The algorithm we developed is
similar to KN-means clustering algorithm developed in
[], with the important difference that each factor node is
stapled to a single point feature, i.e. three of its neighbours
may change, but the first neighbour is always the same
feature point. The number of means is therefore initialized
to be the same as the number of point features, but after the
duplicate means are removed, there will be fewer of them
than there are point features. The algorithm is described as
follows:

1. Specify K = n, the number of means required,
and N , the number of neighbours for each of these means.
2. Initialize the K means onto non-duplicate data points.
3. Set the 1st neighbour of the ith mean to be i, the index of
the corresponding feature point.
4. change← 1
5. while change= 1
6. change← 0
7. for i = 1..K
8. Collect nearest N − 1 neighbours for ith mean

(adding to this the 1st neighbour, which cannot
be removed from this list).

9. If the ith mean’s neighbours have changed
since the previous iteration

10. Reset ith mean to the average of its N neighbours
11. change← 1
12. end
13. end
14. Remove duplicate means (means with the same N

             1. The square represents a mean/factor node
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15. neighbours)
16. end.

Interestingly, the means which we thus calculate be-
come the factor nodes in the LBP part of the algorithm
(each mean becomes a factor node which is connected to
the N neighbours of the mean-the location of the mean
is not used in the factor node except for calculation of its
energy terms). The above algorithm converges reliably
enough for our purposes. If a lack of convergence is
detected, we try reinitializing the locations of the means
(factor nodes), or reducing their number.

6 Accelerated message passing schedule for
LBP using factor nodes

The accelerated message passing schedule proposed here
was inspired by the accelerated message passing schedule
due to Tappen [15]. However as it is presented in [15],
it is applicable only to LBP without Factor nodes, for the
case of pairwise MRF interaction terms only. The method
presented here applies to the case of LBP for higher order
MRF potential terms, which can only be solved using factor
nodes (if belief propagation is used). This method is there-
fore a generalization of the accelerated schedule of [15], as
it may be used to accelerate LBP for an MRF with energy
terms of any order. The idea is to pass information through
the Bayesian network as quickly as possible. The usual par-
allel message passing schedule for LBP with Factor nodes
iterates between calculating all variable node messages,
then all Factor node messages. However, with a graph of
span C, it would then take C iterations for information to
pass from one side of the graph to the other. The acceler-
ated LBP message passing schedule allows information to
be passed more quickly. Once a single factor node message
has been calculated, the next node in the visitation list (a
variable node) will use this incoming factor node message
immediately to calculate its next message (to some fac-
tor node). A single visitation list therefore takes the form
{(p1, n1), (f1,m1), . . . , (pN , nN ), (fN ,mN )}, where pi

refers to the index of the ith variable node in the list, and
ni its nth neighbour, and fi refers to the index of the ith

factor node in the list, and mi its mth neighbour.

6.1 Forming the node visitation lists

In each iteration through all the visitation lists, we want
new information to spread as quickly as possible. There-
fore we want the visitation lists to be as long as possible,
and to have as few lists as possible. However, all messages
must be calculated once per iteration through all the visita-
tion lists. Since the variable nodes and the Factor nodes are
similar nodes in a graph, we can use a recursive algorithm
to traverse the graph repeatedly, forming new lists of nodes
to visit. To find such paths in the factor graph, at each node
visitation, it is necessary to establish, for each neighbour of

the current node

• If the node has any neighbours where the path to that
neighbour is unused over all path traversals thusfar

• If the node has any unvisited neighbours (unvisited in
the current path formation)

• If the node has any unvisited neighbours which have
other unvisited neighbours.

For any node, all neighbours are tested. The order of
preference for adding a node to the visitation list is

1. Neighbours meeting all three criteria
(highest preference)

2. Neighbours meeting the first two criteria
3. Neighbours meeting only the first criterion

(minimal requirement).

A neighbour must meet the first criterion if it is to be
added to the current visitation list. If no neighbours of the
current node meet the first criterion, the list in ended, and
the calculation of the next visitation list can begin. Then,
the list if visited nodes is reset to the empty list, but the list
of used paths between nodes is maintained.

After the visitation lists have been formed in this way,
the list is doubled: in the update algorithm we move once
through each of the visitation lists, then, we move through
each of the lists backwards, updating the message indicated
by the entry in the visitation list. After this is done, all the
messages from factor and variable nodes will have been up-
dated once. The extraction of visitation lists is depicted in
Figs. 6 to 9. In Fig 6, a Markov network is shown with vari-
able nodes (round) connected to the corresponding Factor
nodes (square). The connectivity of variable nodes to fac-
tor nodes is indicated by thick black lines. In Fig. 7, the
first visitation list has been formed (the path is indicated
by the arrows). In Figs. 8 and 9, the 2nd and 3rd visita-
tion lists are shown. Since subsequent visitation lists may
not use edges already used (in either the current or previ-
ous visitation lists), these are deleted from the figures as the
algorithm progresses.

7 Match measure

In this experiment, we use a modified 2D correlation func-
tion which returns values in the range [0,1] for s(xA, xB),
where a high value indicates a good match. However, our
algorithm may be used with a range of different possibil-
ities such as 2D-correlation, Kullbeck-Leibler divergence,
Mutual Information, Earth Mover’s Distance, etc.

8 Results

Following the methodology of [8], we tested this cor-
respondence resolution algorithm by using ground truth
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Figure 6. The set of variable nodes (round) connected to factor
nodes (square). The thick black lines indicate which variables

Figure 7. The set of variable nodes (round) connected to factor
nodes (square). The thick black lines indicate which variables
belong to which energy terms (factor nodes). The thick arrows

dense stereo pairs from the Middlebury data set, docu-
mented in [13]. Random points were chosen from the first
image in the stereo pairs, then the ground truth disparity
map was used to find the correct corresponding points in
the second image. The Middlebury [13] ground truth pairs,
which were estimated using a structured lighting approach,
provides a useful method to test sparse correspondence
resolution algorithms, since by sampling randomly from
points in the first image and using the ground truth dis-
parity map to derive the corresponding second point set in
the second image, we have a correct labelling for every ran-
dom point set generated. The scenes of the stereo pairs are
natural however, so this algorithm has been tested in ”real
world” circumstances. The images were then warped using
randomly generated homographies, to make the matching
problem more realistic.

Figure 8. Paths along the previous visitation list are not consid-

Figure 9. The third visitation list.

The correspondences calculated by each of the
algorithms is compared to this set of correct labellings, and
a ”percentage correct matches” statistic for each method is
derived. The procedure is therefore as follows:

1. For i = 1..100
2. Generate N points from first image, excluding any
point which is occluded in the second view

3. Calculate corresponding points in second image, using
disparity map

4. Warp images and points
5. Use algorithm to compute point correspondences

6. end

The match results are seen in the columns for the
“Random LBP”, “Stapled LBP” and “Random Accel”,
“Stapled Accel” in Tables 1 to 5, for different numbers
of iterations of the algorithm. “Random” refers to there
being no restriction on which neighbours a mean can have
in the KN-means algorithm, “Stapled” means that the

            belong to which energy terms (factor nodes).
          ered when calculating the second visitation list.

                      indicate the first visitation list.
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condition is applied that some feature point must always
be a neighbour of any mean. “LBP” refers to the normal
parallel message passing schedule, “Accel” refers to the
accelerated message passing schedule described in the
previous section.

num Random Stapled Random Stapled ANC
iters LBP LBP Accel Accel

1 33.46 36.86 36.02 39.86 9.16
3 37.29 37.72 39.96 40.56 9.16
5 6.90 37.47 40.21 40.67 9.16
7 37.55 37.66 40.30 40.70 9.16
9 37.66 37.58 40.37 40.70 9.16

11 37.93 37.54 40.37 40.71 9.16

Table 1. Convergence results for four algorithm variations,

num Random Stapled Random Stapled ANC
iters LBP LBP Accel Accel

1 50.39 55.27 53.51 59.74 10.55
3 55.44 56.87 59.43 60.52 10.55
5 56.32 56.76 59.83 60.62 10.55
7 56.10 56.45 60.01 60.63 10.55
9 56.81 56.78 60.07 60.66 10.55

11 56.80 56.70 60.07 60.68 10.55

Table 2. Convergence results for four algorithm variations,

num Random Stapled Random Stapled ANC
iters LBP LBP Accel Accel

1 58.80 67.10 63.48 73.74 10.96
3 68.21 69.70 72.68 75.78 10.96
5 68.63 69.17 73.63 75.80 10.96
7 68.72 69.17 73.74 75.78 10.96
9 68.16 69.66 73.82 75.89 10.96

11 67.90 70.06 73.80 75.86 10.96

Table 3. Convergence results for four algorithm variations,
averaged over 100 runs, with 100 feature points.

The experimental results obtained from applying
these algorithms to point sets of varying sizes are shown
in Tables 1 to 5. The search window for finding candidate
points for matching in the second image for each point in
the first image was held constant at 75 pixels. In these ta-
bles, “ANC” is the average number of candidates per point,
over 100 runs.

num Random Stapled Random Stapled ANC
iters LBP LBP Accel Accel

1 71.57 81.23 77.61 89.84 13.73
3 81.50 84.50 88.23 90.76 13.73
5 84.03 84.92 88.80 90.65 13.73
7 83.76 82.53 89.00 90.73 13.73
9 82.26 81.50 89.15 90.73 13.73

11 81.84 83.50 89.19 90.73 13.73

Table 4. Convergence results for four algorithm variations,

num Random Stapled Random Stapled ANC
iters LBP LBP Accel Accel

1 79.42 95.00 86.42 104.14 15.63
3 95.00 97.57 105.42 107.14 15.63
5 96.42 98.28 108.28 107.14 15.63
7 93.85 96.85 107.42 107.28 15.63
9 99.00 92.85 106.85 108.71 15.63

11 97.00 103.00 106.85 108.71 16.63

Table 5. Convergence results for four algorithm variations,

9 Conclusion

The accelerated message passing algorithm with the sta-
pled KN-means algorithm we propose performs better than
the previous version, which was not accelerated and did not
use a “stapled” version of the KN-means algorithm. The
the effects of the stapled algorithm and the accelerated up-
date schedule were separated by disabling one or both of
them, as shown in Tables. 1 to 5. These tables also indicate
that the accelerated schedule converges faster, and more re-
liably to the correct MAP MRF configuration. There is also
evidence of oscillatory behaviour in the convergence re-
sults, which is a side effect of doing belief propagation on
loopy networks. Although the stereo pairs we used were
simple and already rectified, we made the problem more
difficult by warping the images homographically for each
trial run. The matching algorithms did not take advantage
of the known epipolar geometry between the images; any
gains made are thus intrinsic to the algorithm.
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        averaged over 100 runs, with 50 feature points.

        averaged over 100 runs, with 80 feature points.

       averaged over 100 runs, with 120 feature points.

      averaged over 100 runs, with 150 feature points.
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num num Random Stapled Random Stapled
iters points LBP LBP Accel Accel

1 50 0.25 0.28 0.30 0.32
3 50 0.24 0.41 0.33 0.44
5 50 0.25 0.55 0.47 0.56
7 50 0.29 0.54 0.50 0.58
1 100 13.60 18.86 14.42 19.97
3 100 16.74 19.16 18.32 22.67
5 100 20.59 25.73 21.45 28.64
7 100 22.24 27.01 24.86 29.26
1 150 161.92 229.04 159.28 233.39
3 150 185.82 268.03 181.83 285.31
5 150 208.95 330.02 217.82 344.43
7 150 227.46 394.50 244.30 403.43

Table 6. Average running time in seconds per iteration, for
each algorithm, run on 50, 100 and 150 feature points, with

≈ 10 .

Figure 10. Match correspondence results for 150 feature points,
4 neighbours per factor node. This run shows a 80% correct match

resolution.
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