
Pattern Recognition Special Edition 11

Shape from Shading using MRF Optimization with Gibbs sam-

pling with quadruplet cliques

Markus Louw, Fred Nicolls

Department of Electrical Engineering
University of Cape Town

ABSTRACT

This paper extends the MRF formulation approach developed solving the shape from shading problem. Our method
extends the Gibbs sampling approach to solve an MRF formulation which characterizes the Shape from Shading (SFS)

problem under Lambertian reflectance conditions (the algorithm is extensible to other lighting models). Our method uses

a simpler set of energy functions (on point quadruplets), which is faster to converge, but less accurate.
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1 INTRODUCTION AND LITERATURE RE-
VIEW

Two surveys, [1] (1999), and [2] (2004) describe the
history of Shape from Shading algorithms. In the for-
mer, SFS approaches are classified into minimization
(e.g. [3]), propagation (e.g. [4]), local (e.g. [5]), or
linear (e.g. [6]) approaches. In the latter, they are
classified into methods based on partial differential
equations (characteristic strips [7], power series expan-
sion [8], and viscosity solutions (e.g.[9])), minimization
methods [10], and methods which approximate the im-
age irradiance equation, which contain the local and
linear methods surveyed in [1].

This work builds on that of [11], called Gibbs
Multi-Scale Projective Multi-Res SFS with Occlusion
handling (GMPM-SFS), in which a Markov Random
Field formulation for the labels of points on a lattice
is developed. In that case we minimize a set of energy
terms which correspond to differences in the synthetic
reflectance map vs. observed data, with additional
possibility for putting smoothness constraints on that
surface.

In this paper we change the energy function which
is minimized by increasing the clique sizes of the
Markov Random Field. This approach requires us to
treat the observed reflectance map data (image) as
if each pixel were the reflectance of light off a single
plane through the four corner vertex nodes about the
pixel. Using Gibbs sampling means there is a com-
putational speed increase (if we used LBP, it would
take much longer). This algorithm is called Gibbs
Multi-Scale Projective Multi-Res with clique quadru-
plets SFS, or GMPM4-SFS. This method takes us
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one step closer to incorporating MRF based SFS for
improving dense stereo calculation, which is the ulti-
mate goal. The smoothing energy terms used by most
dense stereo MRF formulations are parameterized in a
heuristic, usually manual, manner, and the algorithms
themselves are often suitable only for planar scene ob-
jects with fronto parallel surfaces. While it is useful
to smooth the disparity maps on the assumption that
the objects in the scene are homogenous and discrete,
we believe that ultimately doing MRF smoothing of
disparity maps using these reflectance based triplet or
quadruplet terms will provide a physically more mean-
ingful dense stereo smoothing operation.

2 LAMBERTIAN REFLECTANCE MODEL

This algorithm calculates a surface on the Lambertian
assumption that the intensity of a pixel is proportional
to the inner product of the direction vector of the in-
cident light and the surface normal at the point of
intersection. We follow the notation of [2], to formu-
late this. The image irradiance equation is

R(−→n (x)) = I(x) (1)

where I(x) is the image irradiance (usually the inten-
sity) measured at location x, and R(−→n (x)) is the re-
flectance function on the surface which takes the nor-
mal at point x as an argument. The surface normal
may be calculated as

1√
(1 + p(x)2 + q(x)2)

(−p(x),−q(x), 1) (2)

where
p = ∂u/∂x1 (3)

and
q = ∂u/∂x2 (4)
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Figure 1: On the left is shown the original MRF topol-

ogy w.r.t. energy terms over cliques of corner vertex node

triplets. On the right is shown our new energy term, asso-
ciated with the quadruplet and represented by a square. It

is connected by lines to their corresponding corner vertex
nodes.

Figure 2: Depiction of the locations of 9 corner vertex
nodes (round) over 4 pixels. The energy terms associated

with each quadruplet are represented by squares. The en-
ergy terms are connected by lines to their corresponding

vertex nodes.

where u is the height of the surface. If there is a unique
light source at infinity, and shining in direction −→w =
(w1, w2, w3), the pixel intensity is the inner product

R(−→n (x)) = w · −→n (x) (5)

Hereafter (until section 6), without loss of generality
(but assuming all surface points are visible to both
camera and light source) we assume the light source
is in the same direction as the camera, which produces
an orthogonal projection.

3 MRF FORMULATION TO SOLVE SFS

This algorithm calculates an optimal set of labels for
the height at each corner vertex on the image. A
corner vertex occurs at the corner of a pixel; at the
intersection of four pixels, one corner vertex repre-
sents the height of the surface at that location. Each
triplet of vertices describes a unique plane, and the
orientation of that plane relative to the direction of
the light source allows a probability to be assigned to
that configuration for that triplet, given the observed

Figure 3: On the left is the plane generated by corner

vertex nodes each at a particular height. The inner prod-

uct of the plane’s normal and the light source’s direction
gives the pixel intensity at the pixel corresponding to those

three corner vertex nodes (Lambertian reflectance model),
which in this diagram is 158/255. On the right, is shown

the best fit/average plane given four corner vertex nodes.

reflectance for that image region. A diagram for the
topology for this scheme with pixels, corner vertex
nodes, and the corresponding energy terms for each
quadruplet, is shown in Fig. 2. The plane generated
by each triplet of pixels forms an angle against the in-
cident light, giving an illumination for that pixel. This
is shown in Fig. 3. Next we define a Markov Random
Field (MRF) on this set of vertex nodes X , given the
image data Y and explicit range data Z (which gives
a prior probability for the height of the surface at a
particular location on the surface):

P (X |Y, Z) ∝
∏

i,j,k,l
i<j<k<l

exp(−ψt
ijkl(xi, xj , xk, xl, yi))...

∏

i

exp(−ψi(xi, zi)) (6)

As far as possible we follow the notation of [11]. The
energy of a particular corner vertex node taking on a
particular value is:

ψt
ijkl(xi, xj , xk, xl, yi, L) = |yi − |−→n ·

−→
L || (7)

where yi is the pixel intensity of the pixel contained
by the three vertex nodes; xi, xj , xk, xl are the corner
vertex node labels.

We now describe two ways for generating a plane
normal from four 3D points. Since we want to ap-
proximate the surface of the object interior to these
four points as a plane (so that we may use its nor-
mal to calculate the reflectance), we may either use
Singular Value Decomposition (SVD) to fit the best
plane through the four points, or for each triplet in
the quadruplet, calculate the normal, then average the
four normals.

3.1 Fitting a plane with Singular Value
Decomposition

We recall that in homogenous coordinates, when a 3D
point X = [x y z 1] lies on a plane p, the inner prod-
uct is zero, i.e. X · p = 0. Therefore, to calculate the
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plane with the smallest least squares error through the
four points Xi, we calculate the SVD:

USV T = SVD






X1

X2

X3

X4




 (8)

after which the coeffecients of p are the elements of
the last column of V T . While there are advantages to
using this method we found the computation time per
SVD evaluation to be much too high, and therefore
used the following method:

3.2 Averaging the plane normals over each of
four interior triplets

If we have four points, xi, xj , xk, xl, we take each
triplet in turn (xi, xj , xk,), (xi, xj , xl), (xi, xk, xl),
(xj , xk, xl), and form the normal for the plane through
the triplet. E.g. for (xi, xj , xk), have the following
equations for the partial derivatives in the height (with
respect to change in position in the horizontal and
vertical directions on the image) in terms of the three
heights of the surface at the points on which the three
corner vertex nodes lie:

p = ∂u/∂x1 = (xj − xi)/∂x1 (9)

and
q = ∂u/∂x2 = (xj − xi)/∂x2. (10)

Assuming square pixels and an overall scale of one
unit per pixel width we set ∂x1 and ∂x2 to 1. We can
then use Eqn. 2 to calculate the plane. Repeating this
for the other triplets, we calculate the average plane
normal −→n .

As in [12] we can extend the energy function to
include static scene/moving light source information
(on the assumption that all points on the surface are
always visible to both the camera and to all light
sources). We adjust Eqn. 7 above to be:

ψt
ijkl(xi, xj , xk, xl, yi,

−→
L ) =

N∑

n=1

|yni − |−→n ·
−→
Ln||, (11)

where N is the number of images (one for each light
source), and n iterates over each of the images, so
yni is the pixel intensity of the pixel contained by the

three vertex nodes, in the nth image.
−→
Ln is the light

source direction in the nth image.

3.3 Boundary conditions and range data

In Shape from Shading algorithms, it is usually neces-
sary to establish some boundary conditions, since all
surface heights calculated (if only shape from shading
be used) are relative to each other, but not against
any fixed frame of reference. In addition, the specifi-
cation of boundary conditions may solve some of the
ambiguities, since there are usually a number of sur-
faces which may generate a particular intensity map
under particular lighting conditions. The MRF for-
mulation allows such boundary conditions and range

data to take on the form of either hard or soft con-
straints. Each corner vertex node xi may be given
a prior probability on the heights of its state vector,
such that

p(Xi = l) ∝ exp(−(h(Xi, l) − u(Xi))), (12)

where u(Xi) is the specified range or depth at Xi, and
h(Xi, l) gives the height corresponding to label l for
Xi. Whether the point is given a value because it lies
on a known boundary, or because we have range data
about the point, the point is treated the same way.

4 MINIMIZING ENERGY OF MRF USING
GIBBS SAMPLING

The labels of nodes in a Markov Random field may be
estimated using Gibbs sampling.

1. for t ← 1..M
2. for i ← 1..N
3. j ←perm(i)
4. Collect energies E(Xj = k|N(Xj)) of each

possible label k of current node X according
to Eqn. 15

5. Calculate the probabilities of each state given
the energy for each state:
p(Xj = k|N(Xi)) =
f(E(Xj = k|N(X)), kT (t))

6. Choose a state for this node L(Xj) by ran-
domly

sampling from the pdf for the states of this
node.

7. end
8. end

In the above algorithm, M is the number of times we
traverse the lattice, N is the number of variables in
the MRF lattice, perm(i) denotes the index into the
set of corner vertex nodes, randomly permutated, so
the nodes are visited in a random order. T (t) denotes
the temperature at a particular iteration (given a tem-
perature schedule for simulated annealing). Function
f(·) is usually of the form:

f(E(X = k|N(X)), kT (t)) =

exp(−E(X = k|N(X))/kT (t))
∑M

n=1 exp(−E(X = n|N(X))/kT (t))
(13)

The temperature schedule we used was

kT (t) = maxTemp−
t

M
(maxTemp−minTemp), (14)

with maxTemp = 50 and minTemp = 0.001, i.e. the
temperature decreases linearly per iteration down to
a value of almost zero.

The following equation describes the calculation of
the local clique energy of a vertex node given its neigh-
bours. All energies of all cliques in which this node
appears are summed, with all nodes given particular
labels. A node’s state probability depends only on the
energy terms in its Markov neighbourhood, which we
calculate as:
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E(X = z|N(X)) =

n(X)∑

i=1

n(X)∑

j=1

n(X)∑

k=1

· · ·

ψX,N(X,i),N(X,j),N(X,k)(z, L(N(X, i)), L(N(X, j)),

L(N(X, k))) · · ·
+ψN(X,i),X,N(X,j),N(X,k)(L(N(X, i)), z, L(N(X, j)),

L(N(X, k))) · · ·
+ψN(X,i),X,N(X,j),N(X,k)(L(N(X, i)), L(N(X, j)), z,

L(N(X, k))) · · ·
+ψN(X,i),N(X,j),N(X,k),X(L(N(X, i)), L(N(X, j)),

L(N(X, k)), z), (15)

where N(X) denotes the neighbours of node X,
(we overload the notation so that N(X, i) denotes the
ith neighbour of node X), n(X) denotes the number of
neighbours for node X , and L(X) denotes the current
label of node X . The function ψWXY Z(·) is so speci-
fied that its value is zero if given nodes WXY Z there
is no energy term over nodes W, X, Y, Z (i.e. if they
are not corners of the same square surface region).

5 MULTI-RESOLUTION IN STATE VEC-
TORS FOR CORNER VERTEX NODE EL-
EVATIONS

The MRF formulation allows us to use a coarse-to-fine
multi-resolution manner (as in [12], [11]): for each of
R resolutions, after N Gibbs sampling iterations (in
one such iteration we sample each of the vertex nodes
once), we may iterate through each of the M corner
vertex nodes and adjust the heights which each ele-
ment in the vertex node’s state vector corresponds to,
and in this way “home in” on a closer approximation
of the correct value.

6 IMAGE PROJECTIONS

As in [11], we use a height label parameterization
where the state on a corner vertex node corresponds to
its depth behind the camera plane (Fig. 4, left). This
formulation is general in that the same parameteriza-
tion works wherever the camera is in the scene, since
corner vertex nodes may be associated with different
image pixels at different elevations (Fig. 4, right).

In Fig. 4 , the squares represent the discretized lo-
cations corresponding to particular labels on the state
vector for any corner vertex nodes. The intersections
with the image plane on projection are shown as cir-
cles. The large numbered squares inside the image
plane are pixels.

The energy function for corner vertex node trian-
gles (Eqn. 7) now becomes:

ψt
ijkl(xi, xj , xk, xl, P,

−→
Y ,

−→
L ) = · · ·

|a(Y, P · D(xi), P · D(xj), P · D(xk), P · D(xl)) · · ·

−|−→n ·
−→
L ||

Figure 4: On the left, the label of a corner vertex node

refers to its height perpendicular to the image plane. On

the right, we see that if the labels parameterize the perpen-
dicular distance from the image plane, different values for

any connected quadruplet may cause the interior quadri-
lateral to span many image pixels.

Figure 5: The connectivity of a quadruplet energy term
which spans four pixels and may be used for smoothing.

where P is the camera projection matrix, Y repre-
sents the image data, D(·) is a function which returns
the 3D homogeneous coordinate of the corner vertex
node in its argument, and a(·) is a function which aver-
ages the intensities of pixels interior to the three given
2D image coordinates, given an image Y . Similarly,
Eqn. 11 for multiple light-sources becomes

ψt
ijkl(xi, xj , xk, xl, P,

−→
Y ,

−→
L ) =

N∑

n=1

· · ·

|a(Yn, P · D(xi), P · D(xj), P · D(xk), P · D(xl)) − |−→n ·
−→
Ln||,

where Yn is the nth image and
−→
Ln is the nth light

source direction.

6.1 Smoothing

If we are using a small number of images, and if the
energy terms used is that are simply those shown in
Fig. 2 and written in Eqn. 6, it is likely that the algo-
rithm may converge to a solution (digital elevation
map) with undesirable high frequency components.
As in [12], we can use two types of smoothing terms,
viz. smoothing with quadruplets of varying size (see
Fig. 5), and smoothing with collinear point triplets
(see Fig. 6). A corresponding energy term for each
of these may be added. Details for the energy terms
may be found in [12].
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Figure 6: Energy term topology for first and second or-

der smoothing on collinear triplets of corner vertex nodes.

The corner vertex nodes are circles and energy terms are
squares. Energy term ”A” enforces smoothing over a small

scale, while energy term ”B” enforces smoothing over a

larger scale. The numbers correspond to pixels (there is
one pixel interior to four corner vertices).

7 SPATIAL MULTI-RESOLUTION

We have implemented this algorithm to work on a
spatially multi-resolution framework. The steps for
this are as follows:

1. for i ← 1..R
2. for n ← 1..P
3. Compress nth image at resolution i, Y n

i to Y n
i+1

4. end
5. end
6. for i ← R..1
7. Run Gibbs sampling algorithm on

−→
Y i initialized

about expanded values in Hi+1 (if i + 1 < R) to
form height map Hi (using a scaling width
appropriate forthe current spatial resolution).

8. end
9. Run Gibbs sampling algorithm on height map H1

In the above scheme P is the number of images of
the surface. It is necessary to remember the scaling
width used at each resolution, since the distances x
and y between corner vertex nodes as shown in Fig. 3
will depend on the current spatial resolution. At the
lowest resolution (the original image), x and y are 1,
but at a scale factor of 2, x and y are 2, and so on,
depending on the spatial decomposition scheme used.
The scaling value affects Eqn. 9 and Eqn. 10, and
all corresponding energy terms. In Fig. 7 we can see
a depiction of the wavelet-style multi-resolution image
decomposition scheme. The square region in the circle
represents the same region on all images, i.e. on the
object surface.

8 RESULTS

We tested the algorithm on real and synthetic data:
the synthetic data was created by generating random
smooth surfaces, and calculating the image of those
shapes under the Lambertian model. For real data we
used images of everyday objects, and some images of
individual froth bubbles from a mineral ore flotation
cell (ground truth was unavailable for these).

Figure 7: An image (bottom) is compressed twice, accord-

ing to some scale factor. The probabilistic height map

calculated at resolution 3 is then expanded and used as an
initial value for calculating the height map at resolution 2,

and so on.

Figure 8: An example of a synthetic surface and its cor-

responding images from the same camera, with different
lighting directions.

8.1 Synthetic Data

For this synthetic data, we generate some smooth sur-
faces and supply random lighting directions and the
camera parameters for a single projective camera to
render the intensity map of the image under Lamber-
tian assumptions (Fig. 8).

Tables 1 and 2 shows the results of the algorithm
run with spatial multi-resolution, with 3 and 4 re-
flectance maps. In all of our trials, the correct bound-
ary conditions along the perimeter of the surface were
given as hard constraints to the algorithm. Each of the
tables is populated with average error entries which
were calculated as follows:

e =
1

N

N∑

t=1

M∑

i=1

|(g(i) − c(i))|, (16)

where g(i) is the true height at corner node vertex
i, c(i) is the height calculated for that corner vertex
node by the algorithm, M is the number of corner
vertex nodes, and N is the number of trial runs (we
used between 5 and 30 trials per entry). In Table
3, we see the performance of the previous version of
algorithm (GMPM-SFS). In theory, only a coarser ap-
proximation may be reached as the energy function is
based on a coarser plane approximation, although we
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Image Width 40 50 60 70
Num iters

1000 812.3 1551.2 1576.5 5062.7
5000 756.1 1168.8 1500.4 4334.1
10000 676.9 1089.5 1445.2 4049.6

Table 1: Three images given (reflectance maps for 3 light

sources). Three height resolutions, two spatial resolutions.
Entries in the table indicate the average error between the

calculated and synthesized surfaces.

Image Width 40 50 60 70
Num iters

1000 640.0 1135.5 1287.67 3967.2
5000 587.8 848.8 1125.4 3448.5
10000 525.9 800.5 1049.1 3243.3

Table 2: Four images given (reflectance maps for 4 light

sources). Three height resolutions, two spatial resolutions,

30 labels per node. Entries in the table indicate the aver-
age error between the calculated and synthesized surfaces.

couldn’t demonstrate this with synthetic data as the
time required for convergence of GMPM-SFS is pro-
hibitive.

8.2 Algorithm running time

The algorithm running times for different numbers of
iterations may be viewed in Table. 4. The running
time is roughly of order O(N · M · L · R), where N
is the number of iterations over each corner vertex
node, for each of R resolutions, if there are M corner
vertex nodes, each with L possible height labels (here
we assume a fixed number of energy terms, different
energy terms have different complexity.).

8.3 Real Data

For the real data, we took pictures of some some bub-
bles from mineral ore flotation cells (Fig. 9, left, mid-
dle). The algorithm was run at various height resolu-
tions, and the run times at each of the resolutions is
shown. In the real images, noise was ameliorated by
applying convolution with a Gaussian kernel.

9 CONCLUSION

The algorithm has been tested in its functioning at
a spatial multiresolution level, and with a projective
camera (projective rendering of generated hypothet-
ical surfaces). Like GMPM-SFS [11], this method
can incorporate both hard and soft constraints on the
boundary conditions of the surface and range data
at points on the surface. Larger images can be pro-
cessed using this method (in a given time), than with
GMPM-SFS. Different reflectance models per surface
can be easily accounted for in the energy terms. The
algorithm supports a projective camera model, though
we have not developed local or global self-occlusion.

Image Width 8 24 30 40 50
Num iters

8000 12.4 114.3 814.4 938.5 1402.8
12000 11.2 102.8 715.1 852.6 1155.5
20000 9.3 99.9 402.2 603.2 842.4
35000 8.8 85.3 302.1 403.1 650.1

Table 3: GMPM-SFS algorithm run with spatial multi-

resolution: Three reflectance maps were used, four reso-

lutions, 30 labels per node. Entries in the table indicate
the average error between the calculated and synthesized

surfaces (these results taken from [11]).

Image Width 40 50 60 70
Num iters

1000 7 12 16 24
5000 32 58 76 116
10000 68 148 154 219

Table 4: Time taken for multiscale version of GMPM4-

SFS, in minutes, for 3 resolutions per height map, 30 labels

per node, 1 energy term, 3 reflectance maps. (Run on
AMD Athlon 2.4 GHz).

Figure 9: Two bubbles and the classic vase shape.

Figure 10: Bubble reconstruction. Note that the bubble

is distorted. GMPM4-SFS does not run well when given
a single image, and the distortion is due to the plane ap-

proximation necessary for a quadruplet energy term.

Figure 11: Bubble reconstruction.
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Figure 12: Vase reconstruction. Note that the vase is dis-

torted. GMPM4-SFS does not run well when given a single

image, and the distortion is due to the plane approxima-
tion necessary for a quadruplet energy term.

10 FUTURE WORK

We are currently experimenting with using the
method here proposed to gain a good initial estimate
of the surface, then continuing refining the surface fur-
ther using the energy function (still with Gibbs sam-
pling) described in [11], which is more exact. We
are also experimenting with using Mean Field Theory
(MFT) [13] and Tree Reweighting (TRW) [14] MRF
optimization techniques. As mentioned before, we be-
lieve that a reflectance function based MRF smoothing
term will be both a theoretical and practical improve-
ment on MRF dense stereo optimization methodolo-
gies. The challenge then becomes one of finding bet-
ter energy function optimization algorithms for these
higher order MRF terms.
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