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ABSTRACT

This paper extends the MRF formulation approach [6] for
solving the shape from shading problem. Our method uses
simulated annealing Gibbs sampling to minimize a lattice
energy for an MRF formulation which characterizes the
Shape from Shading (SFS) problem under Lambertian re-
flectance conditions. We explore a spatial multi-resolution
approach which refines the digital elevation map of the sur-
face in a coarse to fine manner. This framework allows us
to deal with images as projections rather than affine map-
pings, and allows us to incorporate a local occlusion con-
straint to cater for more general scene/lighting configura-
tions.

KEY WORDS
Shape from Shading, MRF, Lambertian illumination.

1 Introduction and Literature Review

The interested reader is referred to two surveys, [11]
(1999), and [5] (2004). In the former, SFS approaches are
classified into minimization (e.g. [9]), propagation (e.g.
[7]), local (e.g. [8]), or linear (e.g. [10]) approaches. In
the latter, they are classified into methods based on partial
differential equations (characteristic strips [1], power series
expansion [2], and viscosity solutions (e.g.[3])), minimiza-
tion methods [4], and methods which approximate the im-
age irradiance equation, which contain the local and linear
methods surveyed in [11].

This work builds on that previously done in [6], in
which a Loopy Belief Propagation (LBP) formulation is
used to solve a Markov Random Field which minimizes
a set of energy terms which correspond to differences in
the synthetic reflectance map vs. observed data, with addi-
tional possibility for putting smoothness constraints on that
surface.

The algorithm here developed is called Gibbs Projec-
tive Multi-Res SFS (GPM SFS). This work improves on [6]
(LBP-SFES) in that here we use a wavelet style spatial multi-
resolution to approximate the correct surface elevation map
in a coarse to fine manner, whereas [6] runs on the entire
image at once. We also use Gibbs sampling rather than be-
lief propagation to minimize the lattice energy, which con-
verges more reliably, and has running time which scales

linearly with the size of the state vectors. Also, we use
a projective camera model rather than an affine camera
model. Finally we show how to include support for local
self-occlusion of the surface from the light source(s).

2 Lambertian Reflectance Model

This algorithm calculates a surface on the Lambertian as-
sumption that the intensity of a pixel is proportional to the
inner product of the direction vector of the incident light
and the surface normal at the point of intersection. We fol-
low the notation of [5], to formulate this. The image irradi-
ance equation is

R(7 (z)) = I(x) (D

where I(z) is the image irradiance (usually the intensity)
measured at location x, and R(7 (z)) is the reflectance
function on the surface which takes the normal at point x
as an argument. The surface normal may be calculated as

1
\/(]_ +p((E)2 +q(m)2)(_p(x)a_Q(I)71) 2)
in which
p = 0u/0z, and ¢ = Ou/0xs (3)

where u is the height of the surface. If there is a
unique light source at infinity, and shining in direction
W = (wl,w2,w3), the pixel intensity is the inner prod-
uct

R(7W(2)) =w- 7 (x). 4

3 MRF formulation to solve SFS

This algorithm calculates an optimal set of labels for the
height at each corner vertex on a surface. We assert that a
corner vertex occurs at the corner of a pixel (as is usual in
SFS an image is used as the basis for the surface); at the
intersection of four pixels, one corner vertex represents the
height of the surface at that location. Each triplet of vertices
describes a unique plane, and the orientation of that plane
relative to the direction of the light source allows a prob-
ability to be assigned to that configuration for that triplet,
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Figure 1. Depiction of the locations of 9 corner vertex nodes
(round) over 4 pixels. The energy terms associated with each
triplet are represented by squares. They are connected by lines
to their corresponding vertex nodes.

hl

Figure 2. Depiction of the plane generated by corner vertex
nodes each at a particular height. The inner product of the plane’s
normal and the light source’s direction gives the pixel intensity at
the pixel corresponding to those three corner vertex nodes (Lam-
bertian reflectance model), which in this diagram is 158/255 .

given the observed reflectance for that image region. A di-
agrams for the topology for this scheme with pixels, corner
vertex nodes, and the corresponding energy terms for each
triplet, is shown in Fig.1. The plane generated by each
triplet of pixels forms an angle against the incident light,
giving an illumination for that pixel. This is shown in Fig.
2. Next we define a Markov Random Field (MRF) on this
set (lattice) of vertex nodes X, given the image data Y and
explicit range data (which gives a prior probability for the
height of the surface at a particular location on the surface):

P(X|Y, Z)
[T exp(—vi@s s,z ) [[ep(—vi(@i, ) )
123k '

As far as possible we follow the notation of [6]. The en-
ergy of a particular corner vertex node taking on a particu-
lar value is:

N
wfjk(xi»xjvxkvyial/): lyi — |7 - L (6)

where y; is the pixel intensity of the pixel contained by the
three vertex nodes, x; is the height of the vertex at right
angles to the other two, x; is the height of the vertex hori-
zontal to that vertex, and zy, is the height of the remaining
vertex. We thus have the following equations for the partial
derivatives in the height (with respect to change in position
in the horizontal and vertical directions on the image) in
terms of the three heights of the surface at the points where
the three corner vertex nodes lie:

p=0u/0xy = (xj — x;)/0x1 (N

and
q=0u/0zxy = (x; — x;)/Oxs. (8)

Assuming square pixels and an overall scale of one
unit per pixel width, we set 0z and Oz, to 1. We can then
use Eqn. 2 to calculate the plane.

As in [6] we can extend the energy function to in-
clude static scene/moving lightsource information (on the
assumption that all points on the surface are always visible
to both the camera and to all light sources). We adjust Eqn.
6 above to be:

N
— —
ngk(thjvxk»yia L):Z‘ynz_|ﬁ)Ln||a (9)

n=1

where N is the number of images (one for each light-
source), and n iterates over each of the images, so yy; is
the pixel intensity of the pixel contained by the three vertex
nodes, in the ny;, image. I:: is the lightsource direction in
the n,j, image.

3.1 Boundary conditions and range data

In Shape from Shading algorithms, it is usually necessary
to establish some boundary conditions, since all surface



heights calculated (if only shape from shading be used) are
relative to each other, but not against any fixed frame of
reference. In addition, the specification of boundary con-
ditions may solve some of the ambiguities, since there are
usually a number of surfaces which may generate a par-
ticular intensity map under particular lighting conditions.
The MRF formulation allows such boundary conditions
and range data to take on the form of either hard or soft
constraints. Each corner vertex node x; may be given a
prior probability on the heights of its state vector, such that

p(Xi = 1) ocexp(=(h(Xi, 1) —u(X,))),  (10)

where u(X;) is the specified range or depth at X;, and
h(X;,1) gives the height corresponding to label | for X;.
Whether the point is given a value because it lies on a
known boundary, or because we have range data about the
point, the point is treated the same way. The potential
(x4, 2;) in Eqn. 5 incorporates such a constraint.

4 Minimizing lattice energy using Gibbs
sampling

The labels of nodes in a Markov Random field may be es-
timated using Gibbs sampling. It is important for this algo-
rithm to randomly initialize the states of all corner vertex
nodes: if they are given similar values (e.g. all zeros) this
can lead to bad convergence. The overall Gibbs sampling
algorithm is:

1. Randomly initalize state vector labels for all corner

vertex nodes

2. fort < 1.N

3. forv«—1.M

4. j «—perm(%)

5 Collect energies E(X; = k|N(X)) of each

possible label k of current node X; according
to Eqn. 13.
6. Calculate the probabilities of each state given
the energy for each state:
p(X; = kIN(X;)) =
J(k, E(X,IN (X)), KT(1))

7.  Choose a label L(X) for this node by randomly
sampling from the pdf for the state probabilities
of this node.

8. end

9. end

In the above algorithm, N is the number of times we
traverse the lattice, M is the number of nodes, perm(?) de-
notes the index into the set of corner vertex nodes, ran-
domly permuted, so the nodes are visited in a random order
(we can also adjust the order so the samples begin in areas
of high certainty). T'(¢) denotes the temperature at a partic-
ular iteration (given a temperature schedule for simulated

annealing). Function f(-) is usually of the form:
f(k, E(X|N(X)), KT (1)) =
exp(—E(X = KIN(X))/kT(t))
Soner exp(~E(X = n|N(X))/KT (1))

Y

where S is the number of label values which X could take
on. The temperature schedule we used was

t
kT (t) = maxTemp — — (maxTemp — minTemp), (12)
M

with maxTemp = 50 and minTemp = 0.001, i.e. the tem-
perature decreases linearly per iteration down to a value of
almost zero.

The following equation describes the calculation of
the local clique energy of a vertex node given its neigh-
bours. All energies of all cliques in which this node ap-
pears are summed, with all nodes given particular labels.
We calculate the energy of a node’s state as:

E(X = kN (X)) = 2137 5700
Vx,N(X,i),N(x.5) (k, LIN (X, 4)), LIN(X, §))) - -
N (xa),x N (x5 (LN (X, 9), k, LN (X, 5))) -
TN N (X ), x (LN (X, 1), LN (X, 7)), k),

where N (X) denotes the neighbours of node X, (we
overload the notation so that N (X, ) denotes the i}, neigh-
bour of node X), n(X) denotes the number of neighbours
for node X, and L(X) denotes the current label of node X .
The function ¥ xy z(-) is so specified that its value is zero
if given nodes XY Z there is no triangular energy term over
nodes X, Y, Z (i.e. if connected they are not such a trian-
gular plane or smoothing triplet as we have specified).

5 Multi-Resolution in state vectors for cor-
ner vertex node elevations

This MRF formulation allows us to use a coarse-to-fine
multi-resolution manner (as in [6]): for each of R resolu-
tions, after NV Gibbs sampling iterations (in one such itera-
tion we sample each of the vertex nodes once), we may it-
erate through each of the M corner vertex nodes and adjust
the heights which each element in the vertex node’s state
vector corresponds to, so that we may home in on a closer
approximation of the correct value. The multi-resolution
algorithm is described as follows:

1. forr — 1..R

2. fori+—1.N

3 Decrease temperature: 7' < T — ¢

4, forj «— 1.M

6 Sample state estimate for j;, corner vertex node
using Gibbs sampling at temperature T

7. end
8. end
9. forj—1.M



Figure 3. An image (bottom) is compressed twice, according
to some scale factor. The probabilistic height map calculated at
resolution 3 is then expanded and used as an initial value for cal-
culating the height map at resolution 2, and so on.

10. Increase height resolution of j;;, corner vertex
node

11. end

12. end

In step 10. above, the new set of heights for node j
are then calculated using a reduced height resolution about
the Gibbs sampled value.

6 Spatial Multi-Resolution

We have implemented this algorithm to work on a spatially
multi-resolution framework. The steps for this are as fol-
lows:

1. fori «— 1..R

2. forn < 1..P

3 Compress nyj, image at resolution ¢, Y;" to Y}

4. end

5. end

6. fori «— R..1 -

7. Run Gibbs sampling algorithm on Y, initialized
about expanded values in H;; (ifi +1 < R) to
form height map H; (using a scaling width
appropriate forthe current spatial resolution).

.end

. Run Gibbs sampling algorithm on height map H;

\© o0

In the above scheme P is the number of images of the
surface. It is necessary to remember the scaling width used
at each resolution, since the distances x and y between cor-
ner vertex nodes as shown in Fig. 2 will depend on the cur-
rent spatial resolution. At the lowest resolution (the origi-
nal image), x and y are 1, but at a scale factor of 2, x and
y are 2, and so on, depending on the spatial decomposition
scheme used. The scaling value affects Eqn. 7 and Eqn.
8, and all corresponding energy terms. In Fig. 3 we can
see a depiction of the wavelet-style multi-resolution image
decomposition scheme. The square region in the circle rep-
resents the same region on all images, i.e. on the object
surface.

.__Camem center

Figure 4. On the left, we see that if the labels parameterize the
perpendicular distance from the image plane, different values for
any connected triplet may cause the interior triangle to span many
image pixels. On the right, if the ray-style parameterization is
chosen, the interior triangle is always within a single pixel.

7 Image projections

If we wish to deal in projective coordinates we could either
assert that the state on a corner vertex node corresponds to
its depth behind the camera plane (Fig. 4, left), or that its
elevation refers to its distance along the ray from the cam-
era center to the corner of the pixel (Fig. 4, right). The for-
mer case has the advantage of allowing a constant density
of corner points along the surface of the object, but corner
vertex nodes may be associated with different image pixels
at different elevations (Fig. 4, left). The latter alternative
allows corner vertex nodes to refer to the same image pixel
regardless of their elevation (Fig. 4, right). However the
calculation of the energy term changes from a scaled vari-
ant of Eqn. 5, and if the camera moves with respect to the
surface, we lose any advantage offered by this parameter-
ization. We chose the first option in our implementation.
In Fig. 4, the squares represent the discretized locations
corresponding to particular labels on the state vector for
any corner vertex nodes. The intersections with the image
plane on projection are shown as circles. The large num-
bered squares inside the image plane are pixels. The energy
function for corner vertex node triangles (6) now becomes:

t . . T 2R
wijk(l'zafj;xkvpaYv L) -

N

|a(Y, P - D(x;), P- D(x;),P- D(xy)) — |7 - L], (14)

where P is the camera projection matrix, Y repre-
sents the image data, D(-) is a function which returns the
3D homogeneous coordinate of the corner vertex node in
its argument, and a(-) is a function which averages the in-
tensities of pixels interior to the three given 2D image co-
ordinates, given an image Y. Similarly, Eqn. 9 for multiple
light-sources becomes
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Figure 5. On the left, a triangle is hidden from the light source
but is visible to the camera. This surface region should therefore
not appear to be illuminated by the light source. Similarly, on the
right, the pixel(s) on the triangle should be dark because the light
source and camera are on different sides of the triangle.

N
— =
Ql)fjk(xi,l’j,l'k,P,Y, ):Z
n=1
—
(Yo, P- D(x:), P~ D(x;), P- D(ay)) — [T - Lo, (15)

N
where Y, is the n;;, image and L, is the n, light
source direction.

8 Simple occlusion of surface from light
sources

The triangle face formed by three connected vertex nodes is
not always visible to both the camera and the light source.
In Fig. 5 we show a triangle which is visible to the camera
but not to the light source. The (expected) value for this
pixel should therefore not involve the summation of the re-
flectance intensity for this light source (this pixel should be
dark).

8.1 Simple occlusion with affine camera, multiple light
sources

Under the affine camera assumption, the energy term from
Eqn. 9 becomes

N
—
¢§jk(xi7mjaxk7yia L,C):Z|yn7,_t|, where
n=1

|7 - Ln| if WL, <0
_
t= and 7 - (D(x;) — C) <0 (16)
0 otherwise

-
In the above equation, D(x;) — C is the vector from

Y
the camera center C' to the 3D location of one of the cor-
ner vertex nodes (we assume the points are relatively close

together, so this condition is sufficient to determine that the
surface is facing the camera).

8.2 Simple occlusion with projective camera, multiple
light sources

The following is the energy term for triplets where a pro-
jective camera with simple occlusion and multiple light
sources is used.

. - —
wijk(xi7xjaxkvpa Ya L,O) =

N
> la(Yn, P D(x;), P D(z;), P- D(xx)) — t, (17

n=1
where
|7 - Lo if WL, <0
-
t= and W - (D(z;) — C) <0  (18)
0 otherwise

_
where Y,, is the n;, image and L,, is the ng;, light
source direction.

9 Results

We tested the algorithm on real and synthetic data: the syn-
thetic data was created by generating random smooth sur-
faces, and calculating the image of those shapes under the
Lambertian model. For real data we used images of every-
day objects, and some images of individual froth bubbles
from a mineral ore flotation cell (ground truth was unavail-
able for these).

9.1 Synthetic Data

For this synthetic data, we generate some smooth surfaces
and supply random lighting directions and the camera pa-
rameters for a single projective camera to render the inten-
sity map of the image under Lambertian assumptions (as in
Fig. 6). In Table 1 are shown results for the algorithm run
without spatial multi-resolution. We display the average
errors for the generated vs. reconstructed surfaces. Table
2 shows the results of the spatial multi-resolution version
of the algorithm. In all of our trials, the correct boundary
conditions along the perimiter of the surface were given as
soft constraints to the algorithm. Each of the tables is pop-
ulated with average error entries which were calculated as
follows:

1
e = 2D lgli) — e, (19)
t=1 i=1
where ¢(7) is the true height at corner node vertex 4, c(7)
is the height calculated for that corner vertex node by the
algorithm, M is the number of corner vertex nodes, and N
is the number of trial runs.
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Figure 6. An example of a synthetic surface and its correspond-
ing images from the same camera, with different lighting direc-
tions.

Image Width 8 24 30 40 50
Num iters
8000 12.2 | 1453 | 1054.7 | 1117.4 | 2326.7
12000 10.9 | 135.7 | 960.8 | 953.8 | 2082.3
20000 9.3 | 1214 | 7725 | 780.3 | 1841.1
35000 88 | 1164 | 4533 | 601.5 | 1720.3

Table 1. Algorithm run without spatial multi-resolution: Three
reflectance maps were used, four resolutions. Entries in the table
indicate the average error between the calculated and synthesized
surfaces.

Image Width | & 24 30 40 50

Num iters
8000 124 | 114.3 | 814.4 | 938.5 | 1402.8
12000 11.2 | 102.8 | 715.1 | 852.6 | 1155.5
20000 9.3 999 | 402.2 | 603.2 | 8424
35000 8.8 85.3 | 302.1 | 403.1 | 650.1

Table 2. Algorithm run with spatial multi-resolution: Three re-
flectance maps were used, four resolutions. Entries in the table
indicate the average error between the calculated and synthesized
surfaces. Our tests suggest that with more iterations and more res-
olutions, the error would decrease further, at the expense of more
computation time.

Figure 7. An egg (real smoothed images) with illumination from
four different directions.

Figure 8. Reconstruction of egg in Fig.7 (this object was far from
Lambertian; it was necessary to do some histogram equalization
on the images first to approximate a Lambertian surface. On a
synthetic egg-shaped surface the algorithm performed fine).

9.2 Real Data

For the real data, we took pictures of some objects: an egg
(Fig. 7) and some bubbles from mineral ore flotation cells
(Fig. 9, left, middle). The algorithm was run at various
height resolutions, and the run times at each of the resolu-
tions is shown. In the real images, noise was ameliorated
by convolving them with a Gaussian kernel. We can see
the reconstructions from these images in Figs. 8, 10, 12.
The reconstruction in Fig. 10 is poor because we haven’t
modelled the reflectance well. For the bubbles, only an
overhead image was available.

9.3 Algorithm running time

The algorithm running times for different numbers of it-
erations may be viewed in Table. 3. The running time is
roughly of order O(N - M - S - R), where N is the num-
ber of iterations over each corner vertex node, for each of R
resolutions, if there are M corner vertex nodes, each with S
possible height labels (here we assume a fixed set of energy
terms, different energy terms have different complexity).

Figure 9. Two bubbles and the classic vase shape.



Figure 10. Poor reconstruction of left bubble in Fig. 9. Smooth-
ing energy terms were used.

Figure 11. Good reconstruction of middle bubble in Fig. 9.
Smoothing energy terms were used.
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Figure 12. Good reconstruction of (synthetic) vase in Fig. 9.
Smoothing energy terms were used.

Image Width | 10 | 20 | 30 | 40 | 50

Num iters
8000 4 | 14| 34 60 89
12000 6 | 23| 50 88 | 138

20000 10 | 38 | 84 | 147 | 232
35000 16 | 73 | 146 | 254 | 398

Table 3. Time taken for algorithm, in minutes, for 4 resolutions
per height map, 20 labels per node, 1 energy term, 3 reflectance
maps. (Run on Intel Centrino 1.86 GHz).

10 Conclusion

The algorithm has been tested in its functioning at a spatial
multi-resolution level with a projective camera (projective
rendering of generated hypothetical surfaces). Like LBP-
SES [6], this method can incorporate both hard and soft
constraints on the boundary conditions of the surface and
range data at points on the surface. It also provides a nat-
ural way incorporate multiple reflectance maps. Different
reflectance models per surface can be easily accounted for
in the energy terms. This algorithm requires less compu-
tation time and storage than LBP-SFS, and the support for
projective camera is more appropriate for real world prob-
lems. However, with current hardware and large images,
the algorithm is very slow to converge.
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