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ABSTRACT
In this paper we develop a novel MRF formulation for
calculating sparse features correspondence in image pairs.
Our MRF terms can include cliques of variable sizes, and
solve these using Loopy Belief Propagation. To calculate
our MRF topology we develop a variant of the K-means
algorithm which we call the KN-means algorithm (where
each mean has a specified number of neighbours). The
method is compared to other state of the art sparse feature
correspondence algorithms and shown to compare well, es-
pecially for less dense feature sets. Outliers are handled
naturally within this paradigm.
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1 Introduction and Literature Review

The goal of sparse stereo correspondence is to match each
feature point in a source image to its corresponding feature
point in a second image. We encounter this problem in a
wide range of computer vision applications, e.g. scene ob-
ject recognition [1], target tracking (where points on the tar-
get are tracked) and sparse 3D reconstruction [12]. Various
assumptions can be made, just as within the dense stereo
matching paradigm, about the spatial relationships between
points in each set, and how these should affect the match-
ing process. The usual initial step of doing a local patch
correlation to compare each source point to its candidates,
and assigning normalized probabilities for each point based
on this correlation, usually results in matching incompati-
bilities (if the MAP candidate is chosen for each source
point ), and ignores useful information about the relative
orientations and neighbourhood structures of the points or
features. The algorithm here described could be used for
initialization of a dense stereo matcher, for biometric iden-
tification, for surface or image (2D or 3D) registration, or
even for target tracking.

One of the first descriptions of the characteristics of
a good feature matching algorithm was given by Ullman
[14], where three principles for matching were given, viz.
the principles of similarity, proximity and exclusion (final
correspondences between source and target points must be

one to one). Some previous attempts at resolving these
incompatibilities include the ”winner take all strategy” of
[9], the ”some winners take all” of [15], an SVD proxim-
ity matrix approximation [10], and resolution by estimation
of approximate affine transformations between matches in
[4]. In [13], maximal cliques in a relational subgraph are
established, and in [5] a concave programming approach
was used. Iterative closest point algorithms [11], [6] are
also feature matching algorithms.

In [7], a simple pairwise MRF based approach was
developed and was shown to work well for sparse match-
ing on pre-rectified images, however the structure preser-
vation criterion was too simple and the structure of the
clique about any point could only be taken into account in-
directly in the MRF potential terms. Also in [7] an iterative
Bayesian algorithm based on the dense stereo formulation
of [2] was developed. Our algorithm is later compared to
both of these algorithms.
In this paper we develop a more general MRF based struc-
ture criterion in which the entire local clique structure about
local point means within the point set may be taken into ac-
count in the energy term. Almost any derived characteristic
of the structure may be used (interior angles, distance from
centroid, Gaussian curvature) as a term in the energy func-
tion of the clique’s candidate target points, which is then
(approximately) minimized by a Loopy Belief Propagation
algorithm.

2 Neighbours and candidates

We are given two point sets X1 and X2, in the first and
second images respectively. After we run the KN-means
algorithm on X1, we have K mean points. The ith such
mean has n(i) neighbours. For each jth point X1(j) in X1

we make a listC(j) of candidate points inX2 for that point.
The notation is overloaded in such a way that if C(j) refers
to candidate matches inX2 for pointX1(j), and if there are
n(C(j)) number of candidate matches we may refer to the
kth such point as C(j, k). Similarly we want to refer to the
kth neighbour of mean K1(i) as NK(i, k). This scheme is
depicted in Fig. 1.

To see a real example of feature points and their can-



Figure 1. This figure shows the neighbourhood and candidate
schemes for X1 in the first image. The quadrilateral on the left is
the first image, containing four points, each labelled as X1(i) with
i = 1..4. The points are connected to a mean/factor node (joined
by thick lines). Each point’s candidates in the second image (the
quadrilateral on the right) shown by connectivity with a dotted
line.

Figure 2. This figure shows that a high number of means (factor
nodes) may be connected to the same point/feature set).

Figure 3. This figure shows that a different set of candidate
points for a neighbours of a given factor node will generate a dif-
ferent mean in the target point set (compare location of K1 in Fig.
1).

didate points see Fig. 4, where lines are shown between
each source point and its candidate target points. In Fig.
5 we see the means derived from the source point set, and
superimposed on the left image of the stereo pair.

3 KN-means algorithm

This method necessitates a means for finding optimal loca-
tions for the factor nodes, such that each one has a specified
number of neighbours (without duplicate factor nodes with
identical connectivity to the same set of neighbours). Fur-
themore, we should like to specify the number of factor
nodes. The algorithm we developed is similar to K-means
clustering, and is described as follows:

1. Specify K and N , the number of means required and
the number of neighbours for each of these means.

2. Randomly initialize the K means onto non-duplicate
data points. (If there are more means than data points,
we can perturb the initial locations with Gaussian
noise)

3. change← 1

4. while change= 1

5. change← 0

6. for i = 1..M

7. Collect nearest N neighbours for mean i

8. if the neighbours of mean i have changed



Figure 4. Example of feature points (crosses) and their candi-
dates (dots) superimposed on the first image of the image pair.

Figure 5. In above images, the feature points are red and the
means/factor node locations are shown as white crosses. Green
lines connect the factor nodes to each of their neighbours. The
lower image shows the image and point set with 25 means, the
upper image has 50 means.

9. Reset ith mean to the average of its
neighbours

10. change← 1

11. end

12. end

13. Remove duplicate means (means with the same N
neighbours)

14. end

Interestingly, the means which we thus calculate be-
come the factor nodes in the LBP part of the algorithm
(each mean becomes a factor node which is connected to
the N neighbours of the mean-the location of the mean
is not used in the factor node except for calculation of
its energy terms). The above algorithm converges reliably
enough for our purposes. If a lack of convergence is de-
tected, we try reinitializing the locations of the means (fac-
tor nodes), or reducing their number.

4 Resolving sparse correspondences using
Loopy Belief Propagation with higher or-
der energy terms

We form a loopy Bayesian network, where the variable
nodes represent points in X1, and each point X1(i) is con-
nected to each of its neighbours in N(i). Each variable
node X1(i) takes on a state vector of probabilities with
the kth element in this state vector representing the prob-
ability of correct assignment/matching of point X1(j) to
point C(j, k) in X2. The state vector for each point node
is initialized with the normalized outputs a simple region
matcher (such as 2D window correlation).

The following equations express the Loopy Be-
lief propagation algorithm using factor nodes (following
loosely the notation of [8]):

µx→f (x) = o(x)
∏
g 6=f

µg→x(x) (1)

µf→x(x) =
∑
u\x

f(u)
∏
y 6=x

µy→f (y) (2)

Where x, y are variable nodes, g, f are factor nodes,
µ(.) is a message vector from a variable to factor node or
vice versa, and o(x) is evidence on the variable node x. In a
Loopy Belief Propagation scheme the above two equations
are iterated usually until convergence. In our experiment,
we used the max-product update algorithm.

This framework can be used to resolve correspon-
dences between sparse points on image pairs. In terms of a
Markov Random Field (MRF) energy function on the tar-
get index assignments for points in X1, we can describe



the joint probability distribution over points and cliques of
varying sizes as,

p(C|Y ) ∝
P∏

k=1

exp(−ψk(ck, yk))
K∏

i=1

exp(−φi(−→c )) (3)

where C refers to the correspondence labelling of each
point in X1, P is the number of points to be matched in
the first point set, Y is all the observation information on
the candidate match strengths for each point in X1, yk is
the candidate location and image information, ψk(ck, yk)
is the energy on a particular set of candidate matches for a
point, also known as the local evidence (in our case found
by a modified 2D window correlation matcher), K is the
number of factor node energy terms, φi(−→c ) is the energy
on a particular set of candidate matches for the neighbours
of factor node i.

The energy for a point match is given by

ψk(ck, yk) = s
(
X1(k), C(X1(k), ck))

)
(4)

where s(·, ·) is a matching function between points
across images, which returns a normalized probability for
the likelihood of the match being correct. This measure
only uses relative distances: the squared error distances be-
tween each neighbour and the current factor node location
are aggregated.

The distance based potential function for a set of can-
didate labels for a particular factor node is:

φi(−→c ) =
∑n(i)

j=1

(
|dist

(
X1(N(i, j),−→c (j)),Ki

)
− · · ·

dist
(
X2(C(N(i, j)),−→c (j)), Ri

)
|/σ

)
if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
z otherwise

In the above equation, the argument vector of −→c
in φi(−→c ) is a vector of elements of target indices for
each neighbour of the ith factor node. E.g. if −→c =
[k l m .. z] is a parameter in φi(−→c ), this indicates
that point N(i, 1) is matched to C(N(i, 1), k), N(i, 2) is
matched to C(N(i, 1), l), and so on. The energy term for
the joint hypothesis over the clique about a factor node de-
pends on the specific candidate match hypothesis for each
factor node neighbour; dist(·,·) is a measure of the Eu-
clidean distance between the two points indexed by its ar-
guments. Crucially, the mean Ri is a mean which exists in
the second image, by taking the centroid of all the candi-
dates (as specified in−→c ) of the neighbours of factor node i.
Ri must therefore be recalculated for each new set of candi-
date hypotheses. The z energy term is some small number
greater than zero. (We used z = 0.01. If z = 0, match
possibilities are immediately excluded, and it converges in-
correctly). After convergence of the LBP algorithm, we
have an a posteriori estimate for p(C|Y ), from which we

Figure 6. This figure shows the interior angles made by the the
Factor node and its neighbours in the first and second images from
Fig. 1. The square represents a mean/factor node

can take the MAP label for each point as its correct candi-
date.

To illustrate that we can use almost any structural
characteristic using this framework, we show the following
potential term based on the angular change per neighbour
candidate, as one iterates through the neighbours of a factor
node. First define, for the ith factor node

nexti(j) = j + 1 if j + 1 < n(i) (5)
nexti(j) = 1 if j + 1 = n(i) (6)

if n(i) is the number of neighbours for the ithfactor node.

φi(−→c ) =
∑n(i)

j=1

(
|θ

(
Ki, j, next(j))

)
− · · ·

θ
(
Ri, C(N(i, j)), C(N(i, next(j))))

)
|/σ

)
if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
z otherwise

where in this equation, θ is a function which returns the
difference in angles between the positive X axis through
the mean and each of the candidate points. This is depicted
in Fig. 6, where for example

θi(K1, X1, X2) = b− a
θi(R1, Y1, Y2) = x− w (7)

4.1 Outliers

To include support for outliers algorithmically, we can add
an element to each vector of candidate probabilities which
represents the notion that that point has no corresponding
point in the target point set. We therefore modify equation
Eqn. to be



φi(−→c ) =

∑n(i)
j=1

(
|dist

(
X1(N(i, j),−→c (j)),Ki

)
− · · ·

dist
(
X2(C(N(i, j)),−→c (j)), Ri

)
|/σ

)
if ∀kl, X2

(
C(N(i, k),−→c (k)) 6= X2

(
C(N(i, l),−→c (l))

)
and−→cj 6= outlier index

y if −→cj = outlier index
z otherwise

In the above equation, y and z are values close to zero.

5 Match measure

In this experiment, we use a modified 2D correlation func-
tion which returns values in the range [0,1] for s(xA, xB),
where a high value indicates a good match. However, our
algorithm may be used with a range of different possibil-
ities such as 2D-correlation, Kullbeck-Leibler divergence,
Mutual Information, Earth Mover’s Distance, etc.

6 Results

Following the methodology of [7], we tested this cor-
respondence resolution algorithm by using ground truth
dense stereo pairs from the Middlebury data set, docu-
mented in [3]. Random points were chosen from the first
image in the stereo pairs, then the ground truth disparity
map was used to find the correct corresponding points in
the second image. The Middlebury [3] ground truth pairs,
which were estimated using a structured lighting approach,
provides a useful method to test sparse correspondence
resolution algorithms, since by sampling randomly from
points in the first image and using the ground truth dis-
parity map to derive the corresponding second point set in
the second image, we have a correct labelling for every ran-
dom point set generated. The scenes of the stereo pairs are
natural however, so this algorithm has been tested in ”real
world” circumstances.

The correspondences calculated by each of the algo-
rithms is compared to this set of correct labellings, and a
”percentage correct matches” statistic for each method is
derived. This is seen in the columns for the ”Max corr”,
”LBP” and ”Perwass” methods in Tables 1 and 2.

The experimental results obtained from applying
these algorithms to point sets of varying sizes are shown
in Tables 1, 2 and 3. In Table 1, the search window for
neighbours and candidates was small (25 pixels), in Table
2 the search window was larger (50 pixels), and the statis-
tics vary accordingly. In these tables, N is the number of
points, ”Max corr” is the unresolved correspondence set
obtained by taking the maximum a posteriori (MAP) cor-
relation estimate for each point’s candidates, ”ANN” is the
average number of neighbours per point, and ”ANC” is the
average number of candidates per point, over 200 runs. In
Fig. 7 we see a typical run of KN-LBP on 300 points.

N Max KN-LBP pairwise Perwass ANC ANN
corr LBP sparse

50 87.6 99.3 87.3 87.1 0.5 0.5
80 81.7 99.6 85.5 85.1 0.85 0.86
100 78.5 99.5 86.1 85.6 1.1 1.1
120 74.8 99.7 86.8 85.8 1.3 1.3
150 71.1 99.6 87.6 86.2 1.6 1.6
200 66.0 96.7 89.3 87.3 2.2 2.2
300 56.9 93.8 91.5 86.9 3.3 3.3
400 50.5 92.5 92.8 67.7 4.3 4.3

Table 1. Table of match results for small candidate and
neighbour search windows (25 pixels).

N Max KN-LBP pairwise Perwass ANC ANN
corr LBP sparse

50 72.3 99.3 88.8 87.5 2.0 2.1
80 62.5 98.5 91.2 88.9 3.1 3.1
100 58.6 99.5 95.4 91.1 4.1 4.2
120 54.0 99.3 97.4 93.0 4.8 4.8
150 48.7 99.6 97.8 92.5 6.1 6.2
200 44.1 97.5 98.2 92.0 8.2 8.3
300 34.2 92.7 99.4 92.6 12.4 12.4
400 31.7 91.4 99.5 92.8 16.5 16.6

Table 2. Table of match results for larger candidate and
neighbour search windows (50 pixels).

N KN-LBP pairwise Perwass
LBP sparse

50 0.15 0.001 0.001
80 1.26 0.015 0.012
100 4.7 0.027 0.032
120 9.7 0.038 0.041
150 4.13 0.053 0.057
200 10.8 0.29 0.31
300 89.2 2.42 2.46
400 236.3 11.4 3.12

Table 3. Average time taken in seconds for each algorithm
running on different size data sets (candidate target and
neighbour size of 30 pixels, 4 neighbours per factor node
for KN-LBP), using an Intel Centrino Duo processor



Figure 7. Match correspondence results for 300 source points,
150 Factor nodes, 4 neighbours per factor node. This run shows a
95% correct match resolution.

7 Discussion

Our algorithm performs better than the pairwise LBP meth-
ods for point sets below 200. After this, our algorithm be-
gins to scale badly in terms of running time and perfor-
mance. It is important to the algorithm’s performance to
choose good values for σ in Eqns. 4.1, 7 and 8. The best
value will change depending on things like the density of
points and the number of neighbours per factor node.

8 Conclusion

The algorithm we propose performs better than the three
alternative methods tested (maximum correlation, and the
two iterative Bayesian methods entitled entitled ”pairwise
LBP” and ”Perwass” in the results tables). Although the
stereo pairs we used were simple and already rectified, the
matching algorithms didn’t take advantage of the known
epipolar geometry between the images; any gains made are
thus intrinsic to the algorithm. The KN-LBP method with
clique based structure preservation outperforms the other
methods especially when the point sets have a low den-
sity (fewer than 200 points). The KN-LBP method requires
much more computation, but has much flexibility in terms
of taking structural properties into the matching criteria.
This algorithm represents an advance in feature matching,
a fundamental and general area of computer vision, which
is simultaneously addressed by well known approaches like
subgraph matching and dynamic programming for a range
of applications from mesh registration to feature mapping.
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