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Abstract: This paper describes a new approach to the shape from shading problem, using loopy belief propagation
which is simple and intuitive. The algorithm is called Loopy Belief Propagation Shape-From-Shading (LBP-
SFS). It produces reasonable results on real and synthetic data, and surface information from sources other
than the image (eg range or stereo data) can be readily incorporated as prior information about the surface
elevation at any point, using this framework. In addition, this algorithm proves the use of linear interpolation
at the message passing level within a loopy Bayesian network, which to the authors’ knowledge has not been
previously explored.

1 INTRODUCTION

The interested reader is referred to two surveys,
(R. Zhang and Shah, 1999), and (Jean-Denis Durou,
2004). In (R. Zhang and Shah, 1999), SFS approaches
are classified into minimization e.g. (Szeliski, 1994),
propagation e.g. (S. Osher, 1988), local e.g. (Pent-
land, 1984), or linear e.g. (P.S. Tsai, 1994) ap-
proaches. In (Jean-Denis Durou, 2004), SFS meth-
ods are classified into methods based on partial dif-
ferential equations (characteristic strips (B.K.P.Horn,
1975), power series expansion (Bruss, 1982), and
viscosity solutions e.g. (M. G. Crandall, 1983)),
minimization methods (P. Daniel, 2000), and ”meth-
ods approximating the image irradiance equation”,
which contain the local and linear methods surveyed
in (R. Zhang and Shah, 1999).

These surveys describe the development of shape
from shading methods, in which researchers have
tried to mimic the way the human brain and eyes ex-
tract shape information from shading on the object,
as well as trying to find analytical solutions based on
geometry and reflectance characteristics. This paper
describes the casting of the SFS problem into the be-
lief propagation paradigm, which would place it in
the minimization and also the propagation class of
method. Our method is algorithmically similar to

(Jian Sun, 2002), in which Sun et al. use Loopy Be-
lief Propagation (LBP) to solve the dense stereo cor-
respondence problem. In (Jian Sun, 2002), each pixel
in the left image is probabilistically assigned dispar-
ities for matching to a pixel in the right image, and
belief propagation is performed on the nodes which
are connected to their immediate (Ising) neighbours.
Our method uses a more complicated energy function
to approximate the correct elevation map for the sur-
face given the irradiance map, and to enforce surface
smoothness conditions. It also incorporates a multi-
resolution interpolation based approach which to our
knowledge has not used before in Loopy Belief Prop-
agation.

2 Lambertian Lighting Model

This algorithm calculates a surface on the Lamber-
tian assumption that the intensity of a pixel is propor-
tional to the inner product of the direction vector of
the incident light and the surface normal at that point.
We may follow the notation of (Jean-Denis Durou,
2004), to formulate this. The image irradiance equa-
tion is

R(−→n (x)) = I(x) (1)



where I(x) is the image irradiance (usually the inten-
sity) measured at location x, and R(−→n (x)) is the re-
flectance function on the surface which takes the nor-
mal at point x as an argument. The surface normal
may be calculated as

1√
(1+ p(x)2 +q(x)2)

(−p(x),−q(x),1) (2)

where
p = ∂u/∂x1 (3)

and
q = ∂u/∂x2 (4)

where u is the height of the surface. If there is a
unique light source at infinity, and shining in direc-
tion −→w = (w1,w2,w3), the pixel intensity is the inner
product

R(−→n (x)) =−→w ·−→n (x) (5)
Hereafter, without loss of generality (but assuming
all surface points are visible to both camera and light
source) we assume the light source is in the same di-
rection as the camera, which produces an orthogonal
projection.

3 Loopy Belief Propagation

The Loopy Belief propagation algorithm using
factor nodes may be expressed in the following equa-
tions (following loosely the notation of (Murphy,
2002)):

µx→ f (x) = o(x) ∏
g6= f

µg→x(x) (6)

µ f→x(x) = ∑
u\x

f (u)∏
y6=x

µy→ f (y) (7)

where x and y are the variable nodes, f and g are fac-
tor nodes, o(x) is the prior probability (observation)
on the variable node x, and where it is assumed µ is in
the domain of f . Our algorithm uses a parallel updat-
ing scheme, with the max product algorithm. After
the specified number of update iterations, the poste-
rior distribution on each corner vertex node may be
given as:

px(x) = o(x)∏
g

µg→x(x), (8)

where g is the set of factor node neighbours of x.

4 Formulation of LBP to solve SFS

This algorithm calculates a posterior for the height
at each corner vertex on the image. A corner ver-
tex occurs at the corner of a pixel; at the intersec-
tion of four pixels, one corner vertex represents the

Figure 1: Depiction of the connectivity between vertex
nodes (round) and factor nodes (square). These four ver-
tex nodes correspond to the heights of the four corners of a
single pixel.

height of the surface at that location. Our energy func-
tional is evolved using Factor nodes which represent
the probability of triplets of these corner vertex nodes.
Each triplet of vertices creates a unique plane, and the
orientation of that plane relative to the direction of
the light source allows a probability to be assigned
to that configuration for that triplet. If the dimen-
sions of the image are width w and height h and if
only simple right angled triangles are used, with the
topology shown in Fig. 1, the number of vertices is
(h+1)(w+1) and the number of factor nodes is 4wh.
If smoothing using point triplets (described later) is
incorporated, the number of Factor nodes is 8wh. A
diagram of the topology for this scheme is shown in
Fig.1. The plane generated by each triplet of corner
nodes forms an angle against the incident light, giving
an illumination for that pixel. This is shown in Fig. 3.
Next we define a Markov Random Field (MRF) on
this set of vertex nodes X , given the image data Y and
explicit range data (which gives a prior probability for
the height of the surface at a particular location on the
surface):

P(X |Y,Z) ∝ ∏
i, j,k:k> j>i

exp−ψ
t
i jk(xi,x j,xk,yi jk) · · ·

∏
i

exp−ψi(xi,zi) (9)

Each element of the state vector of a vertex node
corresponds to the vertex node taking on a particular
height. At each iteration, our implementation of Eqn.
7 is the maximum product (aka max. prod. algorithm)
of the input messages with the elements of factor node
u. A factor node is therefore a 3D array which con-
tains probabilities, each element is derived from the
energy

ψ
t
i jk(xi,x j,xk,yi) ∝ |yi jk−|−→n i jk(xi,x j,xk) ·

−→
L ||, (10)



where N is the number of images (one for each light-
source), ni jk(xi,x j,xk) is the normal of the surface in
the triangle between i, j,k, yi jk is the average image
intensity in the image region enclosing vertex nodes
i, j,k.

−→
L is the lightsource direction, xi is the height

of the vertex at right angles to the other two, x j is the
height of the vertex horizontal to that vertex, and xk is
the height of the remaining vertex. We thus have the
following equations for the partial derivatives in the
height (with respect to change in position in the hor-
izontal and vertical directions on the image) in terms
of the three heights of the surface at the points on
which the three corner vertex nodes lie:

p = ∂u/∂x1 = (x j− xi)/∂x1 (11)
q = ∂u/∂x2 = (x j− xi)/∂x2. (12)

Assuming an affine camera with square pixels and
an overall scale of one unit per pixel width we set ∂x1
and ∂x2 to 1. We can then use Eqn. 2 to calculate the
plane.

Note that it is simple at this stage to extend the
energy function to include static scene/moving light-
source information (on the assumption that all points
on the surface are always visible to both the camera
and to all lightsources). We therefore adjust Eqn. 10
above to be:

ψ
t
i jk(xi,x j,xk,

−→y i jk) ∝

N

∑
s=1
|yi jks−|−→n i jk(xi,x j,xk)·

−→
Ls ||,

(13)
Where N is the number of images (one for each light-
source), ni jk is the normal of the surface in the trian-
gle between i, j,k, yi jks is the average image intensity
in the image region enclosing vertex nodes i, j,k, in
image s (note that we have vectorized −→y i jk to show
that it contains average intensity values over all inten-
sity images, indexed with the subscript s. So s iterates
over each of the images, and

−→
Ls is the lightsource di-

rection in image s.

4.1 Boundary conditions and range data

In Shape from Shading algorithms, it is usually neces-
sary to establish some boundary conditions, since all
surface heights calculated (if only shape from shad-
ing be used) are relative to each other, but not against
any fixed frame of reference. In addition, the specifi-
cation of boundary conditions may solve some of the
ambiguities, since there are usually a number of sur-
faces which may generate a particular intensity map
under particular lighting conditions. LBP allows such
boundary conditions and range data to take on the
form of either hard or soft constraints, and this is han-
dled naturally within the LBP paradigm. Each corner

vertex node xi may be given a prior probability on the
heights of its state vector, such that

xi(X = h) ∝ exp(−|h−u(xi)|), (14)

where u(xi) is the specified range or depth of the
point. Whether the point is given a value because it
lies on a known boundary, or because we have range
data about the point, the point is treated the same way.

4.2 Multi-Resolution
The LBP method allows us to approach the problem
in a multi-resolution manner: after N LBP iterations,
we may iterate through each of the M corner vertex
nodes and adjust the heights which each element in
the vertex node’s state vector corresponds to, so that
we may home in on a closer approximation of the
correct value. The multi-resolution algorithm is de-
scribed as follows:
1. for i = 1 to N
2. for j = 1 to M
3. calculate MAP estimate for all corner vertex node
4. end
5. increase height resolution of each corner vertex node
6. end

In step 5 in the above algorithm, for each corner
vertex node, we calculate the posterior on that node
using Eqn. 8. Then, we find the entry with the highest
probability. The new set of heights for that node are
then calculated using a finer height resolution about
the MAP value. The algorithm for calculating the new
set of heights is
1. Calculate new height resolution: hnew = khold

2. n← 1; a← 1; b← 1
3. while (n < numlabels)
4. if (LB < Hx +a ·hnew < UB)
5. vertex height(n)← Hx +a ·hnew

6. n← n+1; a← a+1
7. end
8. if (n < numlabels)
9. if (LB < Hx−b ·hnew < UB)

10. vertex height(n)← Hx−b ·hnew

11. n← n+1; b← b+1
12. end
13. end
14. end
where in the above algorithm, Hx is the MAP esti-
mate for the height at x, hnew is the height resolution
for the current LBP resolution, k is a compression ra-
tio applied to the previous height resolution hold at
each resolution cycle, LB and UB are the lower and
upper bounds respectively. We then update the mes-
sages from the corner vertex nodes to the factor nodes
to reflect the new heights of the state vector of the cor-
ner vertex nodes, using linear interpolation between
the points on the original values.

µnew
x→ f (x) = L(µold

x→ f (x),h
new,hold), (15)



Figure 2: Factor node connectivity for first and second order
smoothing on collinear triplets of corner vertex nodes. The
corner nodes are circles and factor node squares. Factor
node ”A” implements smoothing over a small scale, while
factor node ”B” implements smoothing over a larger scale.
The numbers correspond to pixels (there is one pixel interior
to four corner vertices).

with L the linear interpolation function, and hnew,hold

are the height labels at the new and old resolutions,
respectively. Linear interpolation at point b between
two points a and c given function f (·) is given by
f (b) = f (a)+(b−a)( f (c)− f (a))/(c−a) or f (b) =
f (c)− (c−b)( f (c)− f (a))/(c−a).

4.3 Smoothing

If the energy terms used is that for the triangle topol-
ogy used are simply those shown in Fig. 1 and written
in Eqn. 9, it is likely that the algorithm may converge
to a solution (digital elevation map) with undesirable
high frequency components.

4.3.1 Smoothing with triangles of varying size

Undesirable high frequency characteristics may be re-
duced using larger triangles (i.e. with the same kind
of factor node entries, but with larger areas, and with
the intensity over the surface of each triangle averaged
over its surface), as is shown in Fig. 4.

4.3.2 Smoothing with collinear point triplets

An alternative is to form an energy term over all
collinear (adjacent) point triplets on the height map.
The smoothing term should correspond to the true na-
ture of the surface as closely as possible. If the surface
is known to have only low frequency spatial change
in height, then the smoothing energy term should pe-
nalize rapid height variation. The topology of the
Bayesian network w.r.t. vertex and factor nodes for
smoothing is shown in Fig. 2. Two factor nodes
are depicted, to show how different smoothing energy
terms may be applied at different scales.

The energy function associated with the smooth-
ing of the corner vertex node triplets is (cf. Eqn. 10)

ψ
s
i jk(xi,x j,xk) =

exp(
(

h(x j)−h(xi)
d(i, j)

−
h(xk)−h(x j)

d( j,k)

)2

/σ), (16)

Figure 3: Depiction of the plane generated by corner ver-
tex nodes each at a particular height. The inner product of
the plane’s normal and the light source’s direction gives the
pixel intensity at the pixel corresponding to those three cor-
ner vertex nodes, which in this diagram is 158/255 .

Figure 4: The connectivity of an isosceles triangle (factor
node ”D”), and a large right angled triangle (factor node
”C”). The factor nodes are square, the corner nodes are
round, and the energy terms for each triangle are repre-
sented in the factor nodes.

where h(·) is the height of a corner vertex node for
a particular value, and d(i, j) is the distance between
the two corner vertex nodes i and j. It is assumed
in this equation that point j lies between i and k, and
the three points are collinear. The smoothness may be
adjusted through σ. With this smoothing energy term,
we can rewrite Eqn.9 as

P(X |Y,Z) ∝ ∏
i, j,k:k> j>i

ψ
t
i jk(xi,x j,xk,yi) · · ·

ψ
s
i jk(xi,x j,xk)∏

i
ψi(xi,zi) (17)

5 Results

We tested the algorithm on real and synthetic data:
the synthetic data was created by generating different
smooth 3D shapes, and calculating the image of those
shapes under the Lambertian model. The light source
was assumed to be in the same direction as the cam-
era, and the image projection of the surface orthogo-
nal. For real data we used images of individual froth
bubbles from a mineral ore flotation cell.



Figure 5: A good run using LBP-SFS. In this example 26
labels per vertex node were used, and 7 Resolutions were
done with a compression ratio of 0.8, with 200 iterations
per resolution. The top left surface is the true one, the top
right surface is LBP-SFS run using a single reflectance map,
the bottom left uses 2 reflectance maps, and the bottom right
surface uses 3 reflectance maps. More information allows
for improved surface calculation.

5.1 Synthetic Data

For this synthetic data, we generate some smooth sur-
faces and supply a lighting direction and camera posi-
tion to calculate the intensity map of the image under
Lambertian assumptions. Examples of the synthetic
surfaces are shown in Fig. 5.

5.2 Real Data

For the real data we show the 3D models along with
the images of the bubbles on which LBP-SFS was run.
The algorithm was run at various height resolutions,
and the run times at each of the resolutions is shown.
In the real images, noise was removed by applying
convolution with a Gaussian kernel

6 Discussion

The algorithm has advantages and disadvantages.
The main problem is that is is prone to fall into lo-
cal minima which are incorrect, resulting in defor-
mation in the reconstruction (e.g. Fig. 7). Even
after the boundary conditions and some range data
have been given, there are many different surfaces
which could produce the observed image intensity
data. Ways of overcoming this within the LBP-SFS
paradigm include adding a smoothing energy term on

Figure 6: Images of two bubbles and a vase with overhead
lighting. The circumference of each object is chosen as
a zero level boundary condition for the bubble. (This is
smoothed with a Gaussian kernel before LBP-SFS is ap-
plied).

Figure 7: A LBP-SFS reconstruction of the objects shown
in in Fig. 6, assuming Lambertian reflectance. The first and
second bubble (first and second row surfaces respectively)
had no surface points given. The surfaces in the third row
show the reconstructed vase with no surface points given,
and in the last row it is shown with a single surface point
given. Energy terms used were those corresponding to small
triangles (Fig. 1), isosceles triangles (Fig. 4) and first order
smoothing (Fig. 2) with σ = 1.



collinear point triplets and the use of surface trian-
gles of varying scales to eliminate high frequency er-
ror in the resultant digital elevation map. Other meth-
ods e.g. (P.L. Lions, 1993) usually remove some am-
biguity by defining a single highest point or charac-
teristic curve (M. G. Crandall, 1983),(M. G. Cran-
dall, 1984),(E. Rony, 1992), (S. Osher, 1988). Our
algorithm may be made more reliable by increasing
the number of labels used to represent corner vertex
heights, although each extra label greatly increases
the computation time. We have also noted that ele-
vation map results using this algorithm are more re-
liable for smaller images (less than 50×50). As the
image size increases, the algorithm is more prone
to fall into bad local minima. We are experiment-
ing with a wavelet-style spatial multi-resolution ap-
proach to overcome this. The algorithm results will
improve with an increase in the number of soft range
data points supplied, and with increased certainty on
those points. This method should really be seen as a
data fusion method for incorporating range data with
intensity information.

7 Conclusion

The algorithm has the advantage of being ad-
justable in terms of the height resolution required per
vertex. Unlike other SFS methods, LBP-SFS can in-
corporate both hard and soft constraints on the bound-
ary conditions of the surface and range data at points
on the surface. Different reflectance models per sur-
face can be easily accounted for in the energy term.
This algorithm requires long computation time and
large storage for images with large depth variation
(such images would require larger vertex node state
vectors given an initial height resolution).

8 Current and Future Work

Preliminary results show that minimizing the
same MRF formulations using simulated annealing
with Gibbs sampling is faster and more reliable. We
are also investigating integrating SFS information
into a dense stereo formulation.

9 Acknowledgements

The authors are grateful for the financial sup-
port given by the National Research Foundation of
South Africa, and Anglo American via the Minerals
Processing Research Unit at the University of Cape
Town.

REFERENCES

B.K.P.Horn (1975). Obtaining Shape from Shading Infor-
mation. McGraw-Hill.

Bruss, A. (1982). The eikonal equation: Some results ap-
plicable to computer vision. Journal of Mathematical
Physics, pages 890–896.

E. Rony, A. T. (1992). A viscosity solutions approach to
shape-from-shading. SIAM. J. Numer. Anal., pages
867–884.

Jean-Denis Durou, Maurizio Falcone, M. S. (2004). Nu-
merical methods for shape from shading: A survey
with benchmarks. CVIU.

Jian Sun, Heung-Yeung Shum, N.-N. Z. (2002). Stereo
matching using belief propagation. ECCV.

M. G. Crandall, P. L. (1983). Viscosity solution of hamilton-
jacobi equationssfs. Trans. Amer. Math. Soc., pages
1–42.

M. G. Crandall, P. L. (1984). Two approximations of so-
lutions of hamilton-jacobi equations. Math. Comput.,
pages 907–922.

Murphy, K. (2002). Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. PhD thesis, Uni-
versity of California, Berkeley.

P. Daniel, J.-D. D. (2000). From Deterministic to Stochastic
Methods for Shape from Shading. In Proc. 4th Asian
Conf. on Comp. Vis.

Pentland, A. (1984). Local shading analysis. IEEE. trans-
actions on Pattern Analysis and Machine Intelligence,
pages 170–187.

P.L. Lions, E. Rouy, A. T. (1993). Shape-from-shading, vis-
cosity solutions and edges. Numerische Mathematik
64, pages 323–353.

P.S. Tsai, M. S. (1994). Shape from shading using linear
approximation. Image and Vision Computing Journal,
pages 187–198.

R. Petrovic, I. Cohen, B. F. R. K. and Huang, T. (2001). En-
forcing integrability for surface reconstruction algo-
rithms using belief propagation in graphical models.
CVPR.

R. Zhang, P. Tsai, J. C. and Shah, M. (1999). Shape from
shading: A survey. PAMI.

S. Osher, J. S. (1988). Fronts propagating with curvature-
dependent speed: algorithms based on hamiltonian-
jacobi formulations. J. Comput. Phys., pages 12–49.

Szeliski, R. (1994). Fast shape from shading. Computer
Vision, Graphics, Image Processing: Image Under-
standing, pages 129–153.


