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Abstract
This paper extends the MRF formulation approach developed
in [7] and [6] for solving the shape from shading problem.
Our method extends the Gibbs sampling approach to solve an
MRF formulation which characterizes the Shape from Shading
(SFS) problem under Lambertian reflectance conditions (the al-
gorithm is extensible to other lighting models). Our method
uses a simpler set of energy functions (on point quadruplets),
which is faster to converge, but less accurate.

1. Introduction and Literature Review
Two surveys, [12] (1999), and [5] (2004) describe the history of
Shape from Shading algorithms. In the former, SFS approaches
are classified into minimization (e.g. [10]), propagation (e.g.
[8]), local (e.g. [9]), or linear (e.g. [11]) approaches. In the
latter, they are classified into methods based on partial differ-
ential equations (characteristic strips [1], power series expan-
sion [2], and viscosity solutions (e.g.[3])), minimization meth-
ods [4], and methods which approximate the image irradiance
equation, which contain the local and linear methods surveyed
in [12].

This work builds on that of [6], called Gibbs Multi-Scale
Projective Multi-Res SFS with Occlusion handling (GMPM-
SFS), in which a Markov Random Field formulation for the
labels of points on a lattice is developed. In that case we min-
imize a set of energy terms which correspond to differences in
the synthetic reflectance map vs. observed data, with additional
possibility for putting smoothness constraints on that surface.

In this paper we change the energy function which is min-
imized by increasing the clique sizes of the Markov Random
Field. This approach requires us to treat the observed re-
flectance map data (image) as if each pixel were the reflectance
of light off a single plane through the four corner vertex nodes
about the pixel. Using Gibbs sampling means there is a com-
putational speed increase (if we used LBP, it would take much
longer). This algorithm is called Gibbs Multi-Scale Projective
Multi-Res with clique quadruplets SFS, or GMPM4-SFS.

2. Lambertian Reflectance Model
This algorithm calculates a surface on the Lambertian assump-
tion that the intensity of a pixel is proportional to the inner prod-
uct of the direction vector of the incident light and the surface
normal at the point of intersection. We follow the notation of
[5], to formulate this. The image irradiance equation is

R(−→n (x)) = I(x) (1)

where I(x) is the image irradiance (usually the intensity) mea-
sured at location x, and R(−→n (x)) is the reflectance function on

Figure 1: On the left is shown the original MRF topology w.r.t.
energy terms over cliques of corner vertex node triplets. On the
right is shown our new energy term, associated with the quadru-
plet and represented by a square. It is connected by lines to their
corresponding corner vertex nodes.

the surface which takes the normal at point x as an argument.
The surface normal may be calculated as

1√
(1 + p(x)2 + q(x)2)

(−p(x),−q(x), 1) (2)

where
p = ∂u/∂x1 (3)

and
q = ∂u/∂x2 (4)

where u is the height of the surface. If there is a unique light
source at infinity, and shining in direction −→w = (w1, w2, w3),
the pixel intensity is the inner product

R(−→n (x)) = w · −→n (x) (5)

Hereafter (until section 6), without loss of generality (but as-
suming all surface points are visible to both camera and light
source) we assume the light source is in the same direction as
the camera, which produces an orthogonal projection.

3. MRF formulation to solve SFS
This algorithm calculates an optimal set of labels for the height
at each corner vertex on the image. A corner vertex occurs at the
corner of a pixel; at the intersection of four pixels, one corner
vertex represents the height of the surface at that location. Each
triplet of vertices describes a unique plane, and the orientation
of that plane relative to the direction of the light source allows



Figure 2: Depiction of the locations of 9 corner vertex nodes
(round) over 4 pixels. The energy terms associated with each
quadruplet are represented by squares. The energy terms are
connected by lines to their corresponding vertex nodes.

Figure 3: On the left is the plane generated by corner vertex
nodes each at a particular height. The inner product of the
plane’s normal and the light source’s direction gives the pixel
intensity at the pixel corresponding to those three corner vertex
nodes (Lambertian reflectance model), which in this diagram is
158/255. On the right, is shown the best fit/average plane given
four corner vertex nodes.

a probability to be assigned to that configuration for that triplet,
given the observed reflectance for that image region. A dia-
gram for the topology for this scheme with pixels, corner vertex
nodes, and the corresponding energy terms for each quadruplet,
is shown in Fig. 2. The plane generated by each triplet of pixels
forms an angle against the incident light, giving an illumination
for that pixel. This is shown in Fig. 3. Next we define a Markov
Random Field (MRF) on this set of vertex nodes X , given the
image data Y and explicit range data Z (which gives a prior
probability for the height of the surface at a particular location
on the surface):

P (X|Y,Z) ∝
Y

i,j,k,l
i<j<k<l

exp(−ψt
ijkl(xi, xj , xk, xl, yi))...

Y
i

exp(−ψi(xi, zi)) (6)

As far as possible we follow the notation of [6]. The energy of
a particular corner vertex node taking on a particular value is:

ψt
ijkl(xi, xj , xk, xl, yi, L) = |yi − |−→n ·

−→
L || (7)

where yi is the pixel intensity of the pixel contained by the three
vertex nodes; xi, xj , xk, xl are the corner vertex node labels.

We now describe two ways for generating a plane normal
from four 3D points. Since we want to approximate the surface
of the object interior to these four points as a plane (so that we
may use its normal to calculate the reflectance), we may either
use Singular Value Decomposition (SVD) to fit the best plane
through the four points, or for each triplet in the quadruplet,
calculate the normal, then average the four normals.

3.1. Fitting a plane with Singular Value Decomposition

We recall that in homogenous coordinates, when a 3D point
X = [x y z 1] lies on a plane p, the inner product is zero, i.e.
X · p = 0. Therefore, to calculate the plane with the smallest
least squares error through the four points Xi, we calculate the
SVD:

USV T = SVD

0B@ X1

X2

X3

X4

1CA (8)

after which the coeffecients of p are the elements of the last
column of V T . While there are advantages to using this method
we found the computation time per SVD evaluation to be much
too high, and therefore used the following method:

3.2. Averaging the plane normals over each of four interior
triplets

If we have four points, xi, xj , xk, xl, we take each triplet in turn
(xi, xj , xk,), (xi, xj , xl), (xi, xk, xl), (xj , xk, xl), and form the
normal for the plane through the triplet. E.g. for (xi, xj , xk),
have the following equations for the partial derivatives in the
height (with respect to change in position in the horizontal and
vertical directions on the image) in terms of the three heights of
the surface at the points on which the three corner vertex nodes
lie:

p = ∂u/∂x1 = (xj − xi)/∂x1 (9)

and
q = ∂u/∂x2 = (xj − xi)/∂x2. (10)



Assuming square pixels and an overall scale of one unit per
pixel width we set ∂x1 and ∂x2 to 1. We can then use Eqn. 2
to calculate the plane. Repeating this for the other triplets, we
calculate the average plane normal −→n .

As in [7] we can extend the energy function to include static
scene/moving light source information (on the assumption that
all points on the surface are always visible to both the camera
and to all light sources). We adjust Eqn. 7 above to be:

ψt
ijkl(xi, xj , xk, xl, yi,

−→
L ) =

NX
n=1

|yni − |−→n ·
−→
Ln||, (11)

where N is the number of images (one for each light source),
and n iterates over each of the images, so yni is the pixel inten-
sity of the pixel contained by the three vertex nodes, in the nth

image.
−→
Ln is the light source direction in the nth image.

3.3. Boundary conditions and range data

In Shape from Shading algorithms, it is usually necessary to
establish some boundary conditions, since all surface heights
calculated (if only shape from shading be used) are relative to
each other, but not against any fixed frame of reference. In ad-
dition, the specification of boundary conditions may solve some
of the ambiguities, since there are usually a number of surfaces
which may generate a particular intensity map under particular
lighting conditions. The MRF formulation allows such bound-
ary conditions and range data to take on the form of either hard
or soft constraints. Each corner vertex node xi may be given a
prior probability on the heights of its state vector, such that

p(Xi = l) ∝ exp(−(h(Xi, l)− u(Xi))), (12)

where u(Xi) is the specified range or depth at Xi, and h(Xi, l)
gives the height corresponding to label l for Xi. Whether the
point is given a value because it lies on a known boundary, or
because we have range data about the point, the point is treated
the same way.

4. Minimizing energy of MRF using Gibbs
sampling

The labels of nodes in a Markov Random field may be estimated
using Gibbs sampling.

1. for t← 1..M

2. for i← 1..N

3. j ←perm(i)

4. Collect energies E(Xj = k|N(Xj)) of each
possible label k of current node X according
to Eqn. 15

5. Calculate the probabilities of each state given
the energy for each state:
p(Xj = k|N(Xi)) =
f(E(Xj = k|N(X)), kT (t))

6. Choose a state for this node L(Xj) by randomly
sampling from the pdf for the states of this node.

7. end

8. end

In the above algorithm, M is the number of times we traverse
the lattice, N is the number of variables in the MRF lattice,
perm(i) denotes the index into the set of corner vertex nodes,

randomly permutated, so the nodes are visited in a random or-
der. T (t) denotes the temperature at a particular iteration (given
a temperature schedule for simulated annealing). Function f(·)
is usually of the form:

f(E(X = k|N(X)), kT (t)) =

exp(−E(X = k|N(X))/kT (t))PM
n=1 exp(−E(X = n|N(X))/kT (t))

(13)

The temperature schedule we used was

kT (t) = maxTemp− t

M
(maxTemp−minTemp), (14)

with maxTemp = 50 and minTemp = 0.001, i.e. the temper-
ature decreases linearly per iteration down to a value of almost
zero.

The following equation describes the calculation of the lo-
cal clique energy of a vertex node given its neighbours. All
energies of all cliques in which this node appears are summed,
with all nodes given particular labels. A node’s state probability
depends only on the energy terms in its Markov neighbourhood,
which we calculate as:

E(X = z|N(X)) =

n(X)X
i=1

n(X)X
j=1

n(X)X
k=1

· · ·

ψX,N(X,i),N(X,j),N(X,k)(z, L(N(X, i)), L(N(X, j)),

L(N(X, k))) · · ·
+ψN(X,i),X,N(X,j),N(X,k)(L(N(X, i)), z, L(N(X, j)),

L(N(X, k))) · · ·
+ψN(X,i),X,N(X,j),N(X,k)(L(N(X, i)), L(N(X, j)), z,

L(N(X, k))) · · ·
+ψN(X,i),N(X,j),N(X,k),X(L(N(X, i)), L(N(X, j)),

L(N(X, k)), z), (15)

where N(X) denotes the neighbours of node X, (we over-
load the notation so that N(X, i) denotes the ith neighbour of
node X), n(X) denotes the number of neighbours for node X ,
and L(X) denotes the current label of node X . The function
ψWXY Z(·) is so specified that its value is zero if given nodes
WXY Z there is no energy term over nodes W,X, Y, Z (i.e. if
they are not corners of the same square surface region).

5. Multi-Resolution in state vectors for
corner vertex node elevations

The MRF formulation allows us to use a coarse-to-fine multi-
resolution manner (as in [7], [6]): for each of R resolutions, af-
ter N Gibbs sampling iterations (in one such iteration we sam-
ple each of the vertex nodes once), we may iterate through each
of the M corner vertex nodes and adjust the heights which each
element in the vertex node’s state vector corresponds to, and
in this way “home in” on a closer approximation of the correct
value.

6. Image projections
As in [6], we use a height label parameterization where the
state on a corner vertex node corresponds to its depth behind
the camera plane (Fig. 4, left). This formulation is general in
that the same parameterization works wherever the camera is



Figure 4: On the left, the label of a corner vertex node refers to
its height perpendicular to the image plane. On the right, we see
that if the labels parameterize the perpendicular distance from
the image plane, different values for any connected quadruplet
may cause the interior quadrilateral to span many image pixels.

in the scene, since corner vertex nodes may be associated with
different image pixels at different elevations (Fig. 4, right).

In Fig. 4 , the squares represent the discretized locations
corresponding to particular labels on the state vector for any
corner vertex nodes. The intersections with the image plane on
projection are shown as circles. The large numbered squares
inside the image plane are pixels.

The energy function for corner vertex node triangles (Eqn.
7) now becomes:

ψt
ijkl(xi, xj , xk, xl, P,

−→
Y ,
−→
L ) = · · ·

|a(Y, P ·D(xi), P ·D(xj), P ·D(xk), P ·D(xl))− |−→n ·
−→
L || (16)

where P is the camera projection matrix, Y represents the
image data, D(·) is a function which returns the 3D homoge-
neous coordinate of the corner vertex node in its argument, and
a(·) is a function which averages the intensities of pixels inte-
rior to the three given 2D image coordinates, given an image Y .
Similarly, Eqn. 11 for multiple light-sources becomes

ψt
ijkl(xi, xj , xk, xl, P,

−→
Y ,
−→
L ) =

NX
n=1

· · ·

|a(Yn, P ·D(xi), P ·D(xj), P ·D(xk), P ·D(xl))− |−→n ·
−→
Ln||,

where Yn is the nth image and
−→
Ln is the nth light source

direction.

6.1. Smoothing

If we are using a small number of images, and if the energy
terms used is that are simply those shown in Fig. 2 and written
in Eqn. 6, it is likely that the algorithm may converge to a so-
lution (digital elevation map) with undesirable high frequency
components. As in [7], we can use two types of smoothing
terms, viz. smoothing with quadruplets of varying size (see Fig.
5), and smoothing with collinear point triplets (see Fig. 6). A
corresponding energy term for each of these may be added. De-
tails for the energy terms may be found in [7].

Figure 5: The connectivity of a quadruplet energy term which
spans four pixels and may be used for smoothing.

Figure 6: Energy term topology for first and second order
smoothing on collinear triplets of corner vertex nodes. The
corner vertex nodes are circles and energy terms are squares.
Energy term ”A” enforces smoothing over a small scale, while
energy term ”B” enforces smoothing over a larger scale. The
numbers correspond to pixels (there is one pixel interior to four
corner vertices).

7. Results
We tested the algorithm on real and synthetic data: the syn-
thetic data was created by generating random smooth surfaces,
and calculating the image of those shapes under the Lamber-
tian model. For real data we used images of everyday objects,
and some images of individual froth bubbles from a mineral ore
flotation cell (ground truth was unavailable for these).

7.1. Synthetic Data

For this synthetic data, we generate some smooth surfaces and
supply random lighting directions and the camera parameters
for a single projective camera to render the intensity map of the
image under Lambertian assumptions (Fig. 7).

Tables 1 and 2 shows the results of the algorithm run with

Figure 7: An example of a synthetic surface and its correspond-
ing images from the same camera, with different lighting direc-
tions.



Image Width 40 50 60 70
Num iters

1000 812.3 1551.2 1576.5 5062.7
5000 756.1 1168.8 1500.4 4334.1

10000 676.9 1089.5 1445.2 4049.6

Table 1: Three images given (reflectance maps for 3 light
sources). Three height resolutions, two spatial resolutions. En-
tries in the table indicate the average error between the calcu-
lated and synthesized surfaces.

Image Width 40 50 60 70
Num iters

1000 640.0 1135.5 1199.67 3678.2
5000 587.8 848.8 1125.4 3248.5
10000 525.9 800.5 1049.1 2946.3

Table 2: Four images given (reflectance maps for 4 light
sources). Three height resolutions, two spatial resolutions, 30
labels per node. Entries in the table indicate the average error
between the calculated and synthesized surfaces.

spatial multi-resolution, with 3 and 4 reflectance maps. In all of
our trials, the correct boundary conditions along the perimeter
of the surface were given as hard constraints to the algorithm.
Each of the tables is populated with average error entries which
were calculated as follows:

e =
1

N

NX
t=1

MX
i=1

|(g(i)− c(i))|, (17)

where g(i) is the true height at corner node vertex i, c(i) is the
height calculated for that corner vertex node by the algorithm,
M is the number of corner vertex nodes, andN is the number of
trial runs (we used between 5 and 30 trials per entry). In Table
3, we see the performance of the previous version of algorithm
(GMPM-SFS). In theory, only a coarser approximation may be
reached as the energy function is based on a coarser plane ap-
proximation, although we couldn’t demonstrate this with syn-
thetic data as the time required for convergence of GMPM-SFS
is prohibitive.

7.2. Algorithm running time

The algorithm running times for different numbers of iterations
may be viewed in Table. 4. The running time is roughly of order

Image Width 8 24 30 40 50
Num iters

8000 12.4 114.3 814.4 938.5 1402.8
12000 11.2 102.8 715.1 852.6 1155.5
20000 9.3 99.9 402.2 603.2 842.4
35000 8.8 85.3 302.1 403.1 650.1

Table 3: GMPM-SFS algorithm run with spatial multi-
resolution: Three reflectance maps were used, four resolutions,
30 labels per node. Entries in the table indicate the average error
between the calculated and synthesized surfaces (these results
taken from [6]).

Image Width 40 50 60 70
Num iters

1000 7 12 16 24
5000 32 58 76 116

10000 68 148 154 219

Table 4: Time taken for multiscale version of GMPM4-SFS, in
minutes, for 3 resolutions per height map, 30 labels per node,
1 energy term, 3 reflectance maps. (Run on AMD Athlon 2.4
GHz).

Figure 8: Two bubbles and the classic vase shape.

O(N ·M ·L ·R), whereN is the number of iterations over each
corner vertex node, for each of R resolutions, if there are M
corner vertex nodes, each with L possible height labels (here
we assume a fixed number of energy terms, different energy
terms have different complexity.).

7.3. Real Data

For the real data, we took pictures of some some bubbles from
mineral ore flotation cells (Fig. 8, left, middle). The algorithm
was run at various height resolutions, and the run times at each
of the resolutions is shown. In the real images, noise was ame-
liorated by applying convolution with a Gaussian kernel.

8. Conclusion
The algorithm has been tested in its functioning at a spatial mul-
tiresolution level, and with a projective camera (projective ren-
dering of generated hypothetical surfaces). Like GMPM-SFS
[6], this method can incorporate both hard and soft constraints
on the boundary conditions of the surface and range data at
points on the surface. Larger images can be processed using
this method (in a given time), than with GMPM-SFS. Differ-
ent reflectance models per surface can be easily accounted for
in the energy terms. The algorithm supports a projective cam-

Figure 9: Bubble reconstruction. Note that the bubble is dis-
torted. GMPM4-SFS does not run well when given a single
image, and the distortion is due to the plane approximation nec-
essary for a quadruplet energy term.



Figure 10: Bubble reconstruction.

Figure 11: Vase reconstruction. Note that the vase is distorted.
GMPM4-SFS does not run well when given a single image, and
the distortion is due to the plane approximation necessary for a
quadruplet energy term.

era model, though we have not developed local or global self-
occlusion.

9. Future Work
We are currently experimenting with using the method here pro-
posed to gain a good initial estimate of the surface, then con-
tinuing refining the surface further using the energy function
(still with Gibbs sampling) described in [6], which is more ex-
act. This method takes us one step closer to incorporating MRF
based SFS for improving dense stereo calculation.
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