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Abstract

This paper describes two iterative Bayesian methods for solv-
ing the sparse point correspondence resolution problem. This
problem arises whenever there are conflicting point labellings
resulting from the use of a simple region based match measure
between points in different images. The first is a Loopy Belief
Propagation method, the second an iterative method first applied
to the dense stereo problem. Both algorithms are simple in the
sense that we have not used a criterion which includes a priori
shape information or relative orientation information, only that
the distance between points and neighbours of points should be
preserved. The correspondence resolutions generated by these
algorithms are of a similar quality. Ground truth point sets gen-
erated by sampling from the Middlebury stereo image sets [3]
were used to compare the algorithms.

1. Introduction and Literature Review

The problem of sparse stereo correspondence is to match each
feature point in a source image to its corresponding feature point
in a second image. We encounter this problem in a wide range
of computer vision applications, e.g. scene object recognition
[1], target tracking (where points on the target are tracked)
and sparse 3D reconstruction [11]. Various assumptions can
be made, just as within the dense stereo matching paradigm,
about the spatial relationships between points in each set, and
how these should affect the matching process. The simple ini-
tial step of applying a correlation match measure to candidate
matches and assigning normalized probabilities for each point
to its candidate matches usually results in matching incompati-
bilities, and ignores useful information about the relative orien-
tations and neighbourhood structures of the points.

Perhaps the first description of the problem was given by
Ullman [14], in which three principles for matching are given
as the principle of similarity, the principle of proximity, and the
principle of exclusion (final correspondences between source
and target points must be one to one). Some previous attempts
at resolving these incompatibilities include the ”winner take all
strategy” of [8], the "some winners take all” of [15], an SVD
proximity matrix approximation [10], and resolution by estima-
tion of approximate affine transformations between matches in
[4]. In [12], maximal cliques in a relational subgraph are estab-
lished, and in [5] a concave programming approach was used.

In [6], the problem is cast into a Maximum Weight Maxi-
mum Cardinality graph matching problem and is solved using
a push-relabel algorithm. In [13], a Bayesian model selection
paradigm is used to simultaneously find point correspondences
and a model which describes the transformation between the
points in the stereo pair. More relevant to our experiments is

[9] (or [2] for a more detailed description of the algorithm), in
which Perwass et al suggested an iterative Bayesian technique
for solving the dense correspondence problem, which we here
adapt to solve the problem of sparse point correspondence reso-
Iution. We apply and test this adapted algorithm, and also test a
Loopy Belief Propagation (LBP) approach, thus allowing us to
compare the two.

2. Neighbours and candidates

Suppose we are given two point sets X; and X», in the first
and second images respectively. For each 44, point X () in
X1, we search through X to find neighbouring points (within
a certain radius), and form a vector of neighbour indices N1 (7)
for this point. So if two points with indices j and k are within
a certain radius of a point with index ¢ in X;, we would have
Ni1(i) = [Jj k ]. We form N3 in the same way, using points in
the second image.

Similarly, for each 4, point X1(z) in X; we make a list
C'(i) of candidate points in X for that point. We overload the
notation in such a way that if C'(¢) refers to candidate matches
in X for point X (7), and if there are n(C(z)) number of can-
didate matches we may refer to the j:, such point as C'(4, 5).
Similarly we want to refer to the j;, neighbour of X1 (z) as
N (i, 7). This scheme is depicted in Fig. 1.

To see a real example of feature points and their candidate
points see Fig. 2, with the lines shown between each source
point and its candidate target points. Similarly, neighbours are
connected by lines and shown in Fig. 3 and Fig. 4. In Fig. 4
there are more points and consequently more neighbours and
more candidate matches.

3. Resolving sparse correspondences using
Loopy Belief Propagation

We form a loopy Bayesian network, where the variable nodes
represent points in X1, and each point X1 (4) is connected to
each of its neighbours in N (7). Each variable node X (%)
takes on a state vector of probabilities with the k¢, element in
this state vector representing the probability of correct assign-
ment/matching of point X1 (¢) to point C(%, k) in X5. The state
vector for each point node is initialized with the normalized out-
puts a simple region matcher (such as 2D window correlation).

The following equations express the Loopy Belief propaga-
tion algorithm using factor nodes (following loosely the nota-
tion of [7]):
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Figure 1: This figure shows the neighbourhood and candidate
schemes for X in the first image. The quadrilateral on the left
is the first image, containing four points, each labelled as X (7)
with ¢ = 1..4. The points within a radius of eachother are neigh-
bours (joined by thick lines), and each point’s candidates in the
second image (the quadrilateral on the right) shown by connec-
tivity with a dotted line. To avoid cluttering, the neighbourhood
system of points in the second image has not been delineated.

Figure 2: Example of feature points (crosses) and their candi-
dates (dots) superimposed on the first image of the image pair.

Figure 3: The top frame and bottom frames are the first and
second images respectively. Feature points and neighbourhood
systems are shown for each point set in each image. There are
200 feature points in each image.



Figure 4: The top frame and bottom frames are the first and sec-
ond images respectively, with neighbourhood systems for each
frame shown. In this example there are 600 points, so the av-
erage number of neighbours per point (ANN) increases. The
average number of candidates per point (ANC) would also in-
crease, but this is not shown.
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Where z, y are variable nodes, g, f are factor nodes, yu(.) is
a message from a variable to factor node or vice versa, and o(x)
is evidence on the variable node z. In a Loopy Belief Propaga-
tion scheme the above two equations are iterated usually until
convergence. In our experiment, we used the max-product up-
date algorithm.

This framework can be used to resolve correspondences be-
tween sparse points on image pairs. Seen in terms of a Markov
Random Field (MRF) energy function on the target index as-
signments for points in X, we can describe the joint probabil-
ity distribution over points and pairwise neighbours as,
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where C' refers to the correspondence labelling of each point in
X1,Y is all the observation information on the candidate match
strengths for each point in X, yx is the candidate location
and image information, N1(k) are the neighbours of node k,
1 (ck, yx) is the energy on a particular set of candidate matches
for a point, also known as the local evidence (in our case found
by a modified window correlation matcher), and ¥y (ck, ¢;) is
the energy on a pair of neighbouring points with particular la-
bellings. The energy for a point match is given by

Vi(ck, yx) < exp (= s(X1(k), C(X1(K),cx)))) 4

where s(-, ) is a matching function between points across
images. The potential function involving point pairs is de-
scribed as
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In the above equation, the arguments in ¥ (ck, = 4, ¢ = 7)
indicate that point X1 (k) is matched to C'(k,4) and X (1) is
matched to C(l, ), (and this is the energy function for this
joint hypothesis); dist(-,-) is a measure of the Euclidean dis-
tance between the two points indexed by its arguments. The z
energy term is some small number greater than zero. (We used
z = 0.01. If this value is forced to zero, match possibilities are
immediately excluded by the LBP algorithm, and it does not
converge correctly). After convergence of LBP to minimize the
MREF energy, we have an a posteriori estimate for p(C|Y"), from
which we can take the MAP label for each point as its correct
candidate.

4. Iterative Beyesian method applied to
sparse stereo correspondence

Given an assumed pixel match (X (A4), X2(C(A, 1)) and a par-
ticular neighbour X (B) in the set N (X1(A)) (which is the set
of neighbours of Xi(A)), we define a compatibility function
h(X1(A), X2(C(A,17), X1(B), X2(C (B, j))) which gives the
a priori probability for X2 (C'(B, j)) being a correct match for
X1(B). This matching function h(, -, -, -) has the same role as
the compatibility energy function (used to compute the outgo-
ing factor node messages) in the previous section. To save space



(and incidentally to keep it more similar to the appearance of
equations in [9]), we identify x4 = X1(A4), ya = X1(B),
zp = X2(C(A,i)) and yp = X2(C(B,j)). The proba-
bility of (za,z5) and (ya,ys) being two neighbouring point
matches is

p(XB =B, Y =yB|lA, B, XA =124,Ya :yA) =

s(za,rB)s(ya,ys)h(xa, 2B, yA,yB)

with

o — aremax P(X5,Ys =y5|A, B, X4,Ya)
YB =AMy 5 \ Tax, P(X5,Ys = y|Xa, Ya)

If, for a particular set (.4, 2B, ya ), the corresponding prior
is maximized by yg, we have

P(XB =xp,YB :QB‘A,B,XA =xa,Ya :yA)
=s(xa,rB)s(ya,yB)- (6)

We would like to incorporate neighbourhood match like-
lihoods in the calculation of the candidate match probabilities
for any particular point, i.e. any point’s candidate match proba-
bilities should depend on its neighbours matching probabilities.
Thus we take our final match probability estimate for a point
pair (x4, xp) to be
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where p is a normalizing factor, n(z4) is the number of
neighbours of the point = 4. This function is clearly iterative, as
we may calculate a new set of probabilities every time a neigh-
bour’s match probabilities are updated. Through the function
h(za,zB,ya,ys) We may assert a similar compatibility rule
as was done in the previous section, by specifying:
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5. Match measure

When calculating the match measure for the term s(xza,x5),
there is a range of different possibilities, e.g. 2D-
correlation, Kullbeck-Leibler divergence, Mutual Information,
Earth Mover’s Distance, etc. Each of these would operate better
under different conditions. In this experiment, we use a mod-
ified 2D correlation function which returns values in the range
[0,1], where a high value indicates a good match. Since we are
using colour images, the correlations per colour channel are av-
eraged to return the match measure s(z 4, zg) for a point pair.

N Max corr | LBP | Perwass | ANN | ANC

50 87.6 87.3 87.1 0.5 0.5

80 81.7 85.5 85.1 0.85 | 0.86

100 78.5 86.1 85.6 1.1 1.1

120 74.8 86.8 85.8 1.3 1.3

150 71.1 87.6 86.2 1.6 1.6

200 66.0 89.3 87.3 22 22

3005y 56.9 91.5 86.9 33 33

400 50.5 88.8 67.7 43 4.3

Table 1: Table of match results for small candidate and neigh-
bour search windows (25 pixels).

N Max corr | LBP | Perwass | ANC | ANN
50 71.5 88.6 87.5 2.0 2.1
80 62.2 91.3 88.9 3.2 3.3
100 58.2 96.1 91.1 4.1 4.2
120 53.8 97.7 93.0 4.9 49
150 48.9 98.0 92.5 6.2 6.2
200 44.1 98.0 92.0 8.2 8.3
300 29.1 99.5 92.6 124 12.4
400 31.5 99.2 92.8 16.6 16.7

Table 2: Table of match results for larger candidate and neigh-
bour search windows (50 pixels).

6. Results

The method we used to test this correspondence resolving al-
gorithm was to use the ground truth dense stereo pairs from the
Middlebury data set, which may be freely downloaded and is
documented in [3]. One of the image sequences was chosen
from this set, and random points were chosen from the first im-
age. The ground truth disparity map was then used to find the
correct corresponding points in the second image. The Middle-
byyy [3] ground truth pairs, which were calculated using a struc-
tured lighting approach, provides an acceptable method to test
sparse correspondence resolution algorithms, since by sampling
randomly from points in the first image and using the ground
truth disparity map to derive the corresponding second point set
in the second image, we have a correct labelling for every ran-
dom point set thus generated. The correspondences calculated
by each of the algorithms is compared to this set of correct la-
bellings, and a “’percentage correct matches” statistic for each
method may be derived. This is seen in the columns for the
”Max corr”, "LBP” and ”Perwass” methods in Tables 1, 2 and
3.

The experimental results obtained from applying these al-

N Max corr | LBP | Perwass | ANC | ANN
50 62.6 95.3 92.1 3.9 4.0
80 53.9 96.8 92.0 6.1 6.2
100 50.0 98.0 91.9 7.7 7.8
120 45.7 99.0 91.0 9.3 94
150 41.5 99.2 89.8 11.7 11.8
200 35.1 97.3 88.1 152 15.2
300 28.2 96.7 88.0 23.1 23.2
400 253 97.4 88.1 30.6 31.2

Table 3: Table of match results for largest candidate and neigh-
bour search windows (70 pixels).



gorithms to point sets of varying sizes are shown in Tables 1,
2 and 3. In Table 1, the search window for neighbours and
candidates was small (25 pixels), in Table 2 the search window
was larger (50 pixels), and in Table 3 it was the largest (70 pix-
els), and the statistics vary accordingly. In these tables, IV is
the number of points, "Max corr” is the unresolved correspon-
dence set obtained by taking the maximum a posteriori (MAP)
correlation estimate for each point’s candidates, ”ANN" is the
average number of neighbours per point, and "ANC” is the av-
erage number of candidates per point, over 400 runs. To see
an example of the point correspondences generated by each of
these methods, see Fig. 5.

6.1. Discussion

The statistics in the top half of Table 1, where a candidate and
neighbour search window size of 25 pixels was used, show us
that when the average number of candidates per point exceeds
one, both iterative Bayesian methods improve the percentage of
correct matches significantly (when ANC is below 1 there are
obviously not many match conflicts to resolve). As the number
of points in the scene increases, the correspondence set taken
by choosing the MAP candidate for each point in X (listed as
the "Max corr” statistic) worsens to only 50% correct matches,
but the iterative methods improve this to about 88%. In Table
2 where the ANC and ANN averages increase due to the use of
a larger window size (50 pixels), the "Max corr” statistic wors-
ens further. The iterative methods however actually improve,
despite the increased averaged number of candidates per point
(ANC). One may have expected the iterative methods to per-
form worse, since with more candidates there must surely be
greater chance of mislabelling the points. In fact, when there
are more neighbours as well as candidates (ANN and ANC are
both greater when more points are involved), the iterative meth-
ods exploit the increase in neighbourhood and distance infor-
mation, and resolve the points more successfully. This trend is
extended in Table 3 where the ANN and ANC are higher still.
The "Max corr” measure worsens, but the iterative Bayesian
methods achieve higher correct match statistics.

7. Conclusion

Both the above methods give a substantial improvement in the
number of correct matches, particularly when there are higher
numbers of candidate matches and point neighbours. A simple
probability model was used for evaluating the likelihood of a
pair of neighbours given a pair of candidate matches, in order
to investigate the appropriateness of the underlying Bayesian
algorithms for resolving matches in the sparse point matching
problem. Although the stereo pairs we used were simple and al-
ready rectified, the matching algorithms didn’t take advantage
of the structural simplicity of the images; therefore any gains
made are intrinsic to probability/belief update algorithm and not
so much to the probability models on the structure of the point
candidates and neighbour relations. The LBP method consis-
tently outperforms the iterative Bayesian method by a margin
which increases with the number of points in the images. For
example, in Table 3, the correct match percentage goes from
a three percent improvement for LBP over the Perwass style
method (95.3 and 92.1 percent respectively) in an image pair
where there are 50 points and ANN and ANC are 3.9 and 4.0
respectively, to a nine percent improvement when there are 400
points and ANN and ANC are 30.6 and 31.2 respectively. Both
algorithms are qualitatively similar in complexity, with similar

Figure 5: These three frames depict the point correspondences
calculated by each algorithm, with 200 points (the search win-
dow size was 50 pixels). The top frame shows the unresolved
set of correspondences, the middle frame shows the set resolved
by the Perwass style iterative Bayesian algorithm, and in the
bottom image is shown the results of the LBP algorithm.



run times.

8. Future work

Epipolar geometry could be incorporated probabilistically into
this scheme, and a more complicated structure preservation cri-
terion could be imposed. A method for dealing with outliers
could easily be included using this framework, for example by
allowing an additional entry in the candidate match state vector
of each point in the first image to correspond to a “no match”
label.
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