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Abstract

Particle filters can be used for motion tracking in monoc-
ular image sequences. This tracker uses the multiple
bayesian tracking approach (BraMBLe), with the fore-
ground image obtained through background subtraction,
as well as prior colour information in the observation
stage. With each particle representing the world coor-
dinates of approximation ellipsoids of all of the people
in the scene, it takes approximately six hundred particles
per frame to track four people in a known environment.
The tracking is stable for a single tracking object, and
progressively less reliable as more tracking objects are
added. The tracker survives short periods of occlusion
with fewer than four people .

1 Introduction

This paper is loosely based on the work of M. Isard and J.
MacCormick [1]. Particle filters can be used to propagate
weighted estimates of parameter values representing ob-
ject world-coordinates in a video sequence. In [1], a sin-
gle parameter set representing a set of ellipsoids, as well
as the visibility of any ellipsoid were propagated. Occlu-
sions, where one person obscures another, are modelled
by the corresponding occlusion of one ellipsoid by an-
other, or by the setting of the non-visibility parameter of
the occluded ellipsoid. In this scheme, we do not ran-
domly vary the visibility of the ellipsoid, since a person
being occluded should ideally be perfectly represented
by the occlusion of the ellipsoid representing him by the
ellipsoid of another person. The framework allows for
static occlusion by inactive objects in the scene, but this
has not been implemented.

The choice of using an ellipsoid to model an individual is
arbitrary, any 3D geometric shape could have been cho-
sen, and an ellipse is a simple shape.

2 Observation likelihood

2.1 Image data

The parameter vector of each particle is represented as:

X = (X1, X2, X3, Xn) (1)

with
Xn = (xn, yn, zn) (2)

the spatial coordinates of the bottom of the ellipse. Note
that the ellipsoids themselves are of constant size, since
we assume the size of the people in the sequence to re-
main reasonably constant.

For each multi-blob parameter set which is propagated, a
set of ellipsoids are generated. These ellipsoids are tested
against the corresponding image frame for that particle.
The conditional probability,

P (Z|X)=P (imz(Z),f(Z)|imx(X))=

G(
∑N

i=0
d(p(imz(Z), i),p(f(Z), i),p(imx(X), i)),p(imx(X),Ed) (3)

with imz a function returning the current image frame
from image data Z, and imx a function returning the vir-
tual image generated by the ellipsoid configuration, f

(foreground) a function returning the foreground image,
obtained by subtracting the current image from a known
background image, and p (pixel) is a function which re-
turns the pixel 3-value of a particular pixel in an image.
The distance function, d, measures the distance between
the particle generated image and the image data of a par-
ticular frame. The pixel function p returns the 3-value of
the pixel at the specified index i, given an image. The
value Ed is to assist the algorithm, to give it an expected
value for the distance of a good particle for that image. It
is used for particle weight adjustment.

The function G is there to adjust the resulting value to
accentuate low distances, and to normalize the total im-
age distance, by dividing it by the number of ellipse pix-
els (non-zero pixels) in the virtual image generated by a
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particle, and this is the purpose of the second parameter.
Ideal particle weights in a particle filter are very small
(10−20) for inappropriate particles, and larger (10−1) for
better particles, and the method for achieving this range
is explained in the next subsection.

For the total set of ellipsoids generated per particle, we
then scan each pixel of the image data, and depending on
which ellipsoid from the generated ellipsoid set was near-
est in world coordinates (an ellipsoid in the same area, but
behind another such ellipsoid, would be occluded), that
pixel is assigned a ”distance” measure. This procedure
is a way of assigning an observation value to individual
pixels.

The distance measure is used to exploit the known colour
information of the individuals in the scene. The people in
this sequence are in fact highly colourized: one is wear-
ing orange, another yellow, etc. A pixel generated by a
particular ellipse will correspond to the colour model of
a particular person, and here, the distance measure asso-
ciated with the pixel i is

d(p1, p2, p3) =
√

ΔR2 + ΔG2 + ΔB2

+foreground(p2) (4)

where

ΔR = (Rm(p1) − Re(p3))

ΔG = (Gm(p1) − Ge(p3))

ΔB = (Bm(p1) − Be(p3)) (5)

with Rm, Gm, Bm the expected colour likelihoods of a
pixel in the elliptical region around the target person in
image space (these values can be accessed through a ta-
ble, at run-time, containing the expected colour values for
each person/ellipse), and reasonable values for these can
be estimated or computed. Re, Ge, Be are the actual val-
ues in the image data for the pixel values in the region of
one of the ellipsoids projected onto the image space. If no
ellipse is projected onto a particular pixel, that pixel does
not contribute to the distance measure. The foreground

function returns a high value if the p2 pixel 3-value is
zero, as it will be returned by the function f if the pixel
is in the background.

If a pixel does not fall in the foreground region generated
by the image background subtraction, it has an additional
very high distance value added to it. With this type of

observation, the distance of a virtual image comprising
the hypothetical ellipsoid shapes can be compared very
quickly with the image data, since each pixel is visited
once only per particle.

2.2 Adjusting the distance measure to obtain an
appropriate particle weight

The particle-probability configuration of an image se-
quence changes over time, so although relative measures
for particle suitability should always remain in ordered
relation to one another, the actual probability measures
found for appropriate particles changes over time. This
is usually dealt with in the normalization stage of parti-
cle propagation. However, if we need to place an accen-
tuation function on the weights of appropriate particles
we need to maintain a measure of a reasonable distance
for appropriate particles, for an arbitrary point in the se-
quence.

The accentuation function is defined as follows:

G(dist, imx(X), distexp) =

N(L( dist
count(imx(X)) , distexp); 0, 1) (6)

where N(· · · ; 0, 1) is a Gaussian curve with mean zero
and standard deviation of one, and the function L lin-
early separates (preprocesses) the distances. The param-
eter dist is the distance of a particle, and the distexp pa-
rameter is the expected distance for a particle. The count

function takes the image data returned by the imx(X)
function, and returns the number of non-zero pixels in the
image of the ellipsoids generated by the particle (see Fig
4.). The separation function L was used with continually
updated values for the expected distance value (distexp)
for particles in a frame. This value was updated by as-
suming the shortest particle distance from the previous
frame to be the same as the expected distance particle in
the next frame.

3 Initialization

The tracker was initialized with prior information con-
cerning the time and location of arrival of new people in
the tracking scene. Therefore the number of tracking ob-
jects is known to be dynamically variable. In the original
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Figure 1: Image data frame with ellipsoids of particle su-
perimposed

BraMBLe implementation [1], ellipsoids had associated
’survival’ and ’arrival’ probabilities. While this is an al-
ternative, searching for and distinguishing new objects is
not in the scope of this implementation.

4 Results

The Multi Blob tracker of this implementation was able
to track a single person past occlusions indefinitely. The
number of particles per frame required for successful
tracking varies with the number of the people in the se-
quence. For a single person, thirty particles are required.
For four people, six hundred particles suffices, however
occlusion can become a problem when a person occu-
pying a small region in the image is covered by a much
larger person, who is closer to the camera. The tracking
in this implementation does not occur in real time. The
platform is not optimized for speed, and on a P3 approx-
imately ten particles can be evaluated per second.

5 Discussion

The algorithm itself is appropriate for tracking multi-
ple objects in a robust fashion. There are many pos-
sible areas of development in this system which could
improve its performance. The observation method was
hand-optimized for this scene, and while it is reasonable
to assume the foreground image should contribute heavily

Figure 2: Background of scene

Figure 3: Foreground of scene (image data)

Figure 4: Virtual scene comprising ellipsoids generated by
particle. This virtual scene was hand-calibrated.
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to the selection of any particle, and the colour data should
contribute less, this may not always be the case, and other
ways of observing a particle could be employed.

An interesting effect was that when the people were lined
up at the center of the image, a particle would evolve in
such a way that it minimizes the size of the ellipsoid for
that person, by moving the ellipsoid further away from
the camera. Thus, a very tiny, distant, ellipse has a better
observation value than a large one which includes parts
of the background around its tracking target.

A way of preventing this would be to restrict the available
parameter space of any particle according to the known
dimensions of the scene. Particle dynamics, which take
into account the momentum of a particle at any time could
be used to sample more effectively from the prior. Pa-
rameter restrictions and dynamics were not implemented
here.

6 Conclusion

The BraMBLe algorithm, with foreground and colour
based observations, is a suitable algorithm for tracking
multiple people occluding one another in a sequence. The
number of particles required for tracking varies with the
number of tracking objects in the scene.

There is room for for future research in sampling meth-
ods, particle dynamics modelling methods, parameter re-
straints, and particle observations.
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