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Abstract—The accurate and quick modelling of inverse lens
distortion to rectify images or predict the image coordinates
of real world objects has long been a challenge. This work
investigates the use of artificial neural networks to perform this
modelling. Several architectures are investigated and multiple
methods of training the networks are used to achieve the best
results. The error is expressed as a physical displacement on
the imaging chip so that a fair comparison can be made between
other published results which are based on cameras with different
resolutions. It is shown that the novel application of locally
optimised neural networks to residual lens calibration data yields
an inverse distortion modelling that is highly competitive with
prior published results.

I. INTRODUCTION

A. Lens Distortion

Lens distortion is that non-linear bending of light rays
by a lens such that it deviates from the pin hole camera
projection model. Typically complex lenses, made of several
glass elements, exhibit monotonically increasing contraction
of the light ray bundle towards the image centre for wide
angle lenses. This is known as barrel distortion. Pin cushion
distortion, found in some tele-photo lenses, is the expansion
of the light ray bundle as a function of angle from the optical
axis. Lenses incorporating aspherical elements can be designed
to have significantly less distortion, but that residual distortion
is not monotonic and is known as moustache distortion.

Distortion in images affects any measurements made from
those images. Straight lines may appear curved, and mea-
surements such as angular separation of two image points,
or triangulation of a point visible to multiple cameras will be
adversely affected.

The classical lens distortion model is that of Brown [1],
[2] and Conrady [3]. Brown’s model, given by (1), allows
one to calculate with the desired accuracy, the corresponding
undistorted point (i.e. that which would have been produced
by a pin hole camera) for any point in the distorted image.
The accuracy of the model is a function of the number
of radial and tangential parameters that are determined, and
whether an optimal distortion centre is found. In order to
create a distortion-free image however the inverse operation
is required: for each (integer located) pixel in the undistorted
image, the (probably non-integer located) pixel in the distorted
image is required. This allows one, after interpolation in
the distorted image, to generate the distortion-free image

with-out gaps or holes. This process is known variously as
undistortion, inverse distortion and distortion correction and
additionally allows one to determine the image coordinates of
a reference determined by external means such as RADAR or
geo-location.

As Brown’s model contains no precise inverse, vari-
ous methods of approximating it have been investigated.
Candocia[4] presented an alternate scale preserving distortion
function, which had an analytical inverse requiring the solving
of two fifth order polynomials. Mallon and Whelan[5] used a
Taylor series expansion of a Brown model containing only a
few coefficients. De Villiers et al[6] fitted a high order Brown
model to map the inverse distortion by using the pseudo-
undistorted points created during distortion characterisation.
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where:
(xu, yu) = undistorted image point,
(xd, yd) = distorted image point,
(xc, yc) = centre of distortion,

Kn = Nth radial distortion coefficient,

Pn = Nth tangential distortion coefficient,

r =
√
(xd − xc)2 + (yd − yc)2, and

. . . = an infinite series.

B. Artificial Neural Networks

Artificial Neural Networks (ANN) are an approximation of
a biological brain. The synaptic connections to other neurons
are represented by input weights. The action potential on
the soma is represented by the output of a function of the
difference between the sum of the weighted inputs and an
internal threshold. Standard texts (e.g. [7]) can be consulted
for more details.

Feed forward ANNs are a standard architecture [7] wherein
the neurons are arranged in layers. The input neurons each



receive one of the inputs and distribute it to the next layer.
Each of the neurons in the subsequent layers accept as inputs,
the outputs of all the neurons in the preceding layer, this
is called a fully connected network. The original method
to train a network consisting of only one neuron (sometime
called a perceptron) was developed by Rosenblatt in 1958[8]
and extended to networks with multiple neurons in multiple
layers by Bryson and Ho in 1969[9]. This is the ubiquitous
backwards propagation model, which is analogous to steepest
descent numerical optimisation.

Much work has been done on applying ANNs to com-
puter vision problems, Egmont-Peterson et al. [10] provide
a review and classification taxonomy for their application.
Camera calibration falls within their pixel-level pre-processing
category. Memon and Khan [11] trained an ANN to produce
the 3 dimensional position of a point given the matched image
coordinates of the points as observed by a stereo camera pair.
Do [12] used neural nets both to model the entire system
as well as to model only the deviation from the pinhole
camera model. Ahmed et al.[13] used an ANN to determine
the intrinsic and extrinsic calibration parameters of a camera,
excluding lens distortion effects which were assumed either
insignificant or accounted for upstream.

C. Contribution

Previous work on modelling inverse distortion did not con-
sider neural networks. Previous work using ANNs for camera
calibration either did not consider the effect of lens distortion
or implicitly modelled distortion only in the direction of
distorted to undistorted domains. This work investigates the
applicability of modelling inverse distortion using ANNs and
the residual pseudo-undistorted points created during normal
lens distortion procedures.

The rest of this paper is divided as follows: First, the
equipment and methods used to capture the data are described
in section II. Then the architectures of the neural networks that
were evaluated is discussed in section III. Section IV describes
the algorithms used to train the neural networks. Section V
provides the results of the training of the neural networks.
Section VI discusses and places the results in context. Finally,
section VII provides some concluding remarks.

II. DATA CAPTURE METHOD

A 46” high definition liquid crystal display (LCD) television
was used to create checker patterns to provide data for the
distortion characterisation. This allowed many thousands of
checkers to be generated and captured, whilst their exact
positions were accurately known. A Prosilica GE1600 machine
vision camera with a Schneider 4.8mm Cinegon lens was
used to observe the LCD screen. The LCD and camera were
arranged such that the LCD was as far as possible, but
still subtended the camera’s entire field of view (FOV). The
Schneider lens exhibited classical monotonic barrel distortion
with a horizontal FOV of approximately 82◦. The GE1600
had a resolution of 1600 by 1200 and 2/3 inch CCD. The

ambient lighting was carefully controlled and simple back-
ground elimination performed by subtracting intermittently
refreshed reference frames with a blank LCD. This ensured
that erroneous reflections in the LCD did not adversely affect
the data.

The checkers were found in the camera’s image with sub-
pixel accuracy using Lucchese and Mira’s[14] method of
finding the saddle point of the 6 coefficient second order
surface of intensity versus X and Y. This surface was fitted
in a least squares sense in a window centered around the
initial roughly found checker position. This refined position
was further refined, using the same method and centering the
window around the previous refined position to ensure that the
final window was indeed centered (to the nearest pixel) around
the refined checker position for maximum accuracy.

The distortion characterisation, and corresponding calcu-
lation of the pseudo-undistorted points, was performed as
described by de Villiers et al.[6] using Brown’s model with
five radial coefficients, three tangential coefficients and an
optimal distortion center.

III. NEURAL NETWORK ARCHITECTURES

All the ANNs considered in this work were of the fully
connected feed forward variety. The sigmoid activation func-
tion given in (2) was used for all the neurons. Each ANN was
trained to provide either the distorted horizontal or vertical
image coordinate when provided with the (pseudo) undistorted
horizontal and vertical image coordinates, i.e. two networks
were used to do the correction.
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where:
n = the number of inputs to the neuron,

wj = the weight associated with input j,
ij = the jth input, and
th = the neuron’s threshold.

Networks with two and three hidden layers were considered.
The first evaluation consisted of ANNs ranging from 3 to 5
neurons in each of three hidden layers. The second evaluation
consisted of all permutations of ANNs with two hidden layers
and from 2 to 19 neurons per hidden layer. The final evaluation
consisted of networks with two hidden layers with between
3 and 5 neurons each. These architectures had ANNs who’s
weights refined using a local optimisation algorithm.

IV. ALGORITHM DESCRIPTIONS

For the first two sets of evaluations described in Section
III, a multi-start strategy was implemented. Ten networks
were generated with random weights and thresholds, and
were then trained using the standard backwards propagation
technique[9]. An adaptive learning rate (initially set to 0.1)
was employed whereby the learning rate was increased by a
multiplicative factor of 1.01 (up to a maximum of 1.0) if two of
the past three epochs resulted in an improvement. Similarly the



TABLE I
SCALED BEST RESULTS FOR ANNS WITH 3 HIDDEN LAYERS

Num Neurons Num neurons in second hidden layer
in first 1 3 5
hidden Num Neurons in 3rd layer Num Neurons in 3rd layer Num Neurons in 3rd layer
layer 1 3 5 1 3 5 1 3 5

2 1.100 1.038 1.076 1.063 0.919 1.053 1.066 0.522 1.045
3 1.109 1.100 1.058 1.028 0.962 0.948 1.057 1.000 0.994
4 1.109 1.077 1.026 1.052 0.706 0.604 0.705 0.579 0.300
5 1.085 1.116 1.087 0.618 0.464 0.517 0.674 0.776 0.385

TABLE II
SCALED AVERAGE RESULTS FOR ANNS WITH 3 HIDDEN LAYERS

Num Neurons Num neurons in second hidden layer
in first 1 3 5
hidden Num Neurons in 3rd layer Num Neurons in 3rd layer Num Neurons in 3rd layer
layer 1 3 5 1 3 5 1 3 5

2 1.132 1.534 1.093 1.542 1.033 1.455 1.354 0.969 1.247
3 1.685 1.562 1.180 1.150 1.063 1.042 1.155 1.078 1.174
4 1.421 1.335 1.358 1.283 0.989 0.983 1.012 0.967 0.825
5 1.237 1.208 1.398 0.843 0.793 0.883 0.982 0.962 0.779

learning rate was decreased by the same multiplicative factor
to a minimum of 0.05 if two of the past three epochs showed
a worsening. The ANNs were trained using two thirds of the
data, and evaluated on the last third. As the data was captured
sequentially from top left to bottom right of the camera’s FOV,
the training and evaluation data were interleaved, specifically
the ANNs were trained on samples 3n + 0 and 3n + 1 and
evaluated on 3n + 2. All the image coordinates were scaled
by the imager’s resolution to be in the normalized range of
(0, 1). This implies that the distorted image coordinates were
∈ (0, 1) but undistorted ones corresponding to distorted points
on the periphery were not.

The backwards propagation algorithm iterates sequentially
through each input-output set in the epoch and makes a
small adjustment. For the third series of evaluations, it was
decided to determine what adjustments should be made to the
neuron’s parameters to make a global improvement for the
entire epoch. To do this, ANNs of the specified architecture
were trained and discarded using the procedure just described,
until one achieved an error of 0.002 or better. Thereafter,
the Leapfrog local optimiser[15] was used (with a centered
difference gradient estimation) to refine the weights. This
implies 2 evaluations of the epoch per weight and threshold in
order to determine what step to take to improve the network.
102 epochs are thus required for a network with two inputs,
two hidden layers of 5 neurons and a single output. The metric
that was minimized was the Root of the Mean Square (RMS)
error of the difference between the actual distorted image
ordinate and the one that the ANN produced based on the
pseudo-undistorted image coordinate.

V. RESULTS

Table I provides the best results achieved for each of the
ten attempts for each of the ANNs with 3 hidden layers. Only
ANNs to correct the horizontal lens distortion component were

Fig. 1. Original undistorted image

trained. The values are the RMS error of the ANN multiplied
by a factor of 100, this scaling is common for Tables I through
V and was implemented to conserve space and show only the
significant digits. Table II provides the average results of each
architecture’s ten runs.

The best results for a subset of the 2 hidden layer architec-
ture ANNs that were trained solely via backward propagation
are provided by table III. Table IV lists the average results for
these architectures.

TABLE III
SCALED BEST RESULTS FOR ANNS WITH 2 HIDDEN LAYERS

Neurons in Neurons in 2nd Layer
1st layer 3 7 11 15 19

3 0.730 0.770 0.946 0.972 0.936
7 0.256 0.248 0.373 0.317 0.332

11 0.212 0.247 0.344 0.351 0.315
15 0.226 0.240 0.231 0.363 0.390
19 0.223 0.226 0.281 0.361 0.421



(a) Image undistorted as per [6]. (b) Typical ANN corrected image.

(c) Image undistorted by an ANN with 11 pixel error. (d) Image undistorted by an ANN with sub-pixel error.

Fig. 2. Distortion corrected images

TABLE IV
SCALED AVERAGE RESULTS FOR ANNS WITH 2 HIDDEN LAYERS

Neurons in Neurons in 2nd Layer
1st layer 3 7 11 15 19

3 0.971 0.960 0.979 0.997 1.005
7 0.467 0.426 0.542 0.598 0.602
11 0.379 0.331 0.462 0.555 0.541
15 0.364 0.325 0.452 0.498 0.513
19 0.392 0.346 0.456 0.499 0.522

The best results achieved for the two hidden layer ar-
chitecture ANNs whose backwards propagation determined
weights were further refined by a local optimiser are given
in table V. Results for both X and Y distortion corrections are
provided. Figure 2 gives a more intuitive representation of the
results. Figure 1 is a raw image captured with the Prosilica

TABLE V
SCALED BEST RESULTS FOR OPTIMISED ANNS

Neurons Neurons in 2nd Layer
1st 3 4 5

layer X Y X Y X Y
3 0.224 0.145 0.064 0.169 0.064 0.144
4 0.059 0.055 0.122 0.065 0.068 0.063
5 0.043 0.065 0.034 0.062 0.075 0.058

GE1600 and Schneider Cinegon 4.8mm lens. Figure 2(a) is the
undistorted image, calculated as described by de Villiers et al.
[6]. A typical image undistorted by an ANN is given in figure
2(b). An image corrected by an ANN pair which converged to
an accuracy of 10.98 pixels is given by figure 2(c). The image
corrected by the best X and Y ANNs, which together yield an
accuracy of 0.85 pixels, is provided in figure 2(d).



VI. DISCUSSION OF RESULTS

A visual comparison between figures 2(a) and 2(d), pro-
duced by the sub-pixel accurate ANN, show no perceptible
differences for the inner images. Both appear to straighten
all the curvature apparent in figure 1, although the ANN
does perform poorly for regions corresponding close to the
periphery of 1. This is due to the scaling used, where the full
output range (0, 1) was used to represent the image resolution,
this also forces points that are not visible to the camera to be
mapped onto the border of the image. Figure 2(c), created
using an ANN which obtained a poorer fit shows residual
curvature is still apparent even in the centre of the image,
and the smearing in the periphery noticeably worse.

The values given in tables I through V are normalized
results, taking into account the scaling, the X values need
to be multiplied by 16, and the horizontal values by 12 to
get the pixel values. However, comparing errors of distortion
correction in terms of pixels is misleading as this is affected
both by the resolution and the size of the imager. So a
comparison in terms of microns on the imager makes more
sense if one assumes similar amounts of distortion induced by
the lens.

Table VI provides this comparison. The first two rows
correspond to the best results achieved for ANNs with 3 and
2 hidden layers respectively, the Y distortion correction error
was assumed to equal to the X error. The third row gives
the results achieved with the locally optimised ANNs, and the
fourth row lists the results of using high order brown models
to characterise the inverse distortion as per [6]. The final rows
provide, for comparison, results published in literature. Mallon
and Whelan’s camera resolution was inferred from their paper
and the imager size assumed to be 2/3 inch.

TABLE VI
DISTORTION RESULTS COMPARISON

Correction Resolution Pixel Pixel Micron
Type Horiz Vert Size (µ) Error Error

ANN 3H 1600 1200 5.5 6.78 37.3
ANN 2H 1600 1200 5.5 4.80 24.75
ANN Opt 1600 1200 5.5 0.85 4.68

de Villiers[6] 1600 1200 5.5 0.30 1.65
Mallon[5] 1024 768 8.6 0.42 3.61

de Villiers[6] 667 502 13.15 0.013 0.17

It can be seen that from table VI that the optimised ANNs
perform comparably well to the best models available in
literature. On the same camera and lens the reverse Brown
models performed only 3 times better. It achieved very similar
results to Mallon and Whelan’s camera which had a 6.0mm
focal length and may thus have exhibited less initial distortion.
Their quoted error metric is the mean, whereas the other values
are RMS errors, whose magnitude is, by definition, larger.

In general the ANNs with 3 hidden layers performed
better as the number of neurons increased in each layer. The
performance of the ANNs with 2 hidden layers was in general
superior to that of the 3 hidden layer ANNs and yielded the
best results with 11 or more neurons in the first layer, and 7 or

fewer in the second. The results achieved by locally optimising
small ANNs with only a few neurons in 2 layers yielded results
improved by almost an order of magnitude.

No scaling was performed other than the normalization
required by the activation function of the neurons; results
in literature ([6]) report separate scaling for each modelled
parameter being required. Further work with a scaling such
that valid distorted image coordinates occupy a subset of the
full output range (e.g. (0.1, 0.9) as opposed to (0, 1)) may
improve the results significantly.

VII. CONCLUSIONS

It has been shown that artificial neural networks can effec-
tively undistort an image by modelling the intractable inverse
distortion. The results achieved are comparable to the most
accurate algorithms when they are performed on the same
apparatus. Comparing to published results, when converting
errors to microns on the imaging chip, shows similar perfor-
mance to established methods for modelling inverse distortion.

ANNs are thus an acceptable way to rectify all but the
outermost peripheries of a distorted image, and a new scaling
method that may overcome even this limitation has been
proposed.
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