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Abstract

The EM algorithm is a commonly cited solution in the
literature for the problem of maximum likelihood estima-
tion of covariance matrices under a Toeplitz constraint.
In this paper, the solution is extended to the case of two-
dimensional signals, where spatial stationarity enforces a
Toeplitz-block-Toeplitz structure on the covariance matrix.

A further generalisation which is presented involves the
estimation of the covariance when the observations are sub-
ject to subspace interference. It is shown that this situation
is amenable to a missing data interpretation, and can be in-
corporated into the EM iteration with moderate ease. The
solution shares all the characteristics of the 1-D Toeplitz
estimate.

The need to solve this problem arises in many invariance
applications, where it is required to fit a stationary multi-
variate normal model to data which is subject to a certain
type of interference. The case of unknown DC offset is in-
cluded in this class.

1. Introduction

This paper discusses a method of estimating the covari-
ance matrix of a MVN random process when each data
observation has an additive contribution which lies in a
known linear subspace but is otherwise arbitrary. A con-
straint placed on the estimation is that the covariance have
a Toeplitz-block-Toeplitz (TBT) structure, corresponding to
a stationary assumption in two dimensions.

By far the most common way of calculating maximum
likelihood estimates of Toeplitz-structured covariance ma-
trices is by means of the expectation-maximisation (EM)
algorithm of Dempster, Laird, and Rubin [1], as reported
by Miller, et al. [4, 5]. We present a modified EM itera-

tion which handles the case of Toeplitz-block-Toeplitz co-
variances, as well as subspace interference. Naturally the
solution specialises to the 1-D case of the covariance matrix
simply being Toeplitz.

This work has direct bearing on statistical modelling of
image-like data. The problem of radar target detection in
clutter is one such an application. Detection of tumours in
mammography is another.

2. Subspace interference

Two-dimensional observations need to be reordered into
vector form. If row or column-ordering is assumed [2, p.
23], stationarity implies that covariance matrices are TBT
(block Toeplitz with Toeplitz blocks).

It is assumed that the covariance of the random process������� �	��
�
, with



a TBT matrix, needs to be estimated.

However, we cannot observe realisations of this process di-
rectly; each observation is contaminated by subspace inter-
ference. Thus if ��� �������	� �	� are independent realisations of
this process, then the observed data are ��� ��������� �	� with

����������� �"!$#%� � (1)

In this equation �&! is a matrix which spans the interfer-
ence subspace, and for convenience we may assume that
�"'! �(!(�*) . The + -dimensional vector #,� is a completely
unknown constant which differs for each observation.

This problem is amenable to a missing data interpreta-
tion: the component of

�
which lies in the interference

subspace is destroyed by the unknown # � , and is therefore
useless for inferential purposes. Thus if �.- is a matrix
with orthogonal columns which span the subspace comple-
mentary to � ! , only the component ��/� �0�('- � � �0�('- � �
of the observation is valid for estimating the parameters in
the distribution of

�
.



3. Maximum likelihood parameter estimation

The portion of the data that is uncorrupted by interfer-
ence is

� / � ��� � � �('- 
 �"- � . It is required to estimate



from � samples of this quantity, under the constraint that

be Toeplitz-block-Toeplitz. If � is large, maximum like-

lihood estimation is approximately optimal.
The EM algorithm is commonly used for maximum like-

lihood estimation of Toeplitz covariances. It is an iterative
method whereby a difficult parametric optimisation prob-
lem is embedded inside a higher-dimensional but computa-
tionally more tractable one [1]. This is an ideal formulation
for the problem outlined here: the hypothetical complete
data observations are �,� � ��� �	��� � , with

�
a CBC ma-

trix representing the parameters to be optimised over, and
the actual useful observations ��/� take the role of the in-
complete data. The embedding is such that the unobserved
interference-free data � � (reordered from a ���	� observa-
tion) is related to the complete data � � (reordered from a
 ��� observation) by

� � �� )�������� )���������� � � (2)

Here � represents the matrix Kronecker product, ) � ��� is
a � �"! identity matrix of zeros with ones along the main
diagonal,

�
has 
 � 
 blocks each of dimension �#�$� , and


has �%�	� blocks each of dimension �$�&� . The useful
observations ��/� are related to the complete data �,� by

� /� �0� '- � � �0� '-  )'������� )���������� � � (3)

The reason for the EM algorithm being effective in this
problem is because a CBC matrix is very easily diago-
nalised.

The method of solution redefines the problem slightly:
instead of maximising the likelihood over the set of all TBT
matrices, the maximisation is performed over the set of
all matrices with positive definite circulant-block-circulant
(CBC) extensions. This is the 2-D analogue of the the stan-
dard 1-D Toeplitz formulation, found for example in [4].
The covariance matrix



is obtained from the correspond-

ing complete data circulant covariance
�

by

 �( )'�)���*��)+������� �  )'�)����� )�������� ' � (4)

A notable feature of the EM algorithm is its use of a
missing data formalism to arrive at the required solution.
In the previous section is was demonstrated that subspace
interference is also conducive to a missing data interpreta-
tion. This presents further justification for using the EM
technique.

4. EM formulation of solution

The quantity
� / � �('- � is all that is observed of the

hypothetical 
 � -dimensional complete data , � � � � �-� � ,

where
�

is a circulant-block-circulant matrix. It is sim-
pler to consider the problem in a rotated coordinate system
where the covariance matrix is diagonalised.

Let . �/. � �0. � , where . � and . � are the
 and � -dimensional unitary DFT matrices. It can be
shown that this matrix diagonalises the class of all circulant-
block-circulant matrices with 
 � 
 blocks each of dimen-
sion �&�1� [2, p. 150]. The transformed complete data2 �3.4, is therefore distributed as

2 � ��� �	��5 �
, with5 �6. � .47�� diag

� 8:9� ���������;8:9�<� � a diagonal matrix com-
prised of the eigenvalues of

�
. The log-likelihood in this

rotated coordinate system is

=  5 �;> � ���������;> � � �@?BA � CEDGFIHKJ 5 J A
LC �M
�;N��
> 7� 5$O � > �

�@?PA � C
�<�M
� N �
DQFRH 8 9� A

LC ���M
� N��

�M
�;N �
J > �IS!�� J 98 9�

�
(5)

where
> � � � > �I L � ��T�T+T	�;> �I 
 ��� � ' .

Consider the parameter to be estimated to be the diago-
nalised covariance matrix

5
, which uniquely specifies the

complete data CBC covariance. The EM algorithm pro-
ceeds as follows: for the E (expectation) step, the current
best estimate

5$UWV�X
of the parameter is used to find the ex-

pected log-likelihood function
=  5 �Y> � �������	�Y> �*� , condi-

tioned on the observations � /� ��������� � /� . In the M (maximi-
sation) step, this conditional expectation is maximised with
respect to the parameters to yield the next iterate

5 UWV�Z � X
.

For the problem addressed in this paper, these steps will
now be formalised.

4.1. Expectation step

Given the previous best estimate
5 UWV�X

of the parameters
as well as the incomplete data ��/� ��������� � /� , the expected
value of the complete data log likelihood is

[]\<= J 5 UWV�X � � /� ��������� � /�_^ �@?`A � C
���M
� N��
DQFRH 8 9 UWV�X� A

LC ���M
� N �

�M
�;N �
[#\ J a �IS!�� J 9 J 5]UbV'X � � /� ������� � � /� ^8 9�

�
(6)

4.2. Maximisation step

This involves finding the new parameters
5 UbV'Z � X

which
maximise the conditional expected log-likelihood in equa-
tion 6. Taking the derivative with respect to

8c9d and setting



to zero yields a necessary condition for a maximum:� [#\�= J 5 UWV�X � � /� �������	� � /� ^� 8 9d �(A � C
L
8 d A

LC �M
�;N � A

[#\ J a � ��S� J 9 J 5 UWV�X � ��/� ��������� ��/�_^ 8 9d � 9 ��� ���� � � (7)

so

8 9 UWV�Z � Xd �
L
�
�M
�;N �
[#\ J a �I�� � J 9 J 5$UWV�X � � /� �������	� � /� ^ � (8)

Given the values
8 9 UWV�Z � Xd for each � , the new estimate of the

parameter is
5 UWV�Z � X � diag  8 9 UWV�Z � X� �������	�Y8 9 UbV'Z � X��� � . Since� UbV'Z � X � . 7 5 UWV�Z � X . , the improved covariance matrix

estimate

 UWV�Z � X can be obtained from this using equation 4.

5. Calculating the iteration

The new estimate
8 9 UWV�Z � Xd in equation 8 is expressed

in terms of the expectations
[#\ J a �I�� � J 9 J 5 UWV�X � � /� �������	� � /� ^ ,

which have yet to be calculated. Taking the same approach
as Miller et al. [4], we note that

8 9 UWV�Z � Xd in that equation is
identical to the � th diagonal element of the matrix

5 UbV'Z � X	
	 �
L
�
�M
�;N �
[]\<> � > 7� J 5 UWV�X � � /� ��������� � /� ^

�
L
�
�M
�;N �
[]\<> � > 7� J 5$UWV�X � � /� ^ (9)

(since the observations are independent). To calculate this
expectation, the joint distribution of

> � and � /� is required:

with ���� ���('- 
 UWV�X �(- and � 	
	 � 5 UWV�X we have� � /�> �������
5 UWV�X � ��� � �� � � � � ��� � � 	� 	 � � 	
	 ��� � (10)

The expectation � 	 � ��� 7� 	 can be calculated as follows:

� 	 � � [#\<> ��� / 7� ^ � [#\<> ��� 7� ^  ) �)��� ��) �+��� � ' � -
� [#\<> � > 7� ^  . �K�&. ���� )'����� ��)��R���'� �"-
� 5 UbV'X  . U � X� �&. U � X� � � - � (11)

where . U � X� contains the first � columns of . � , and . U � X�
the first � columns of . � . The conditional distribution of> � given ��/� and

5 UWV�X
is [6]

> � J 5 UWV�X � � /� � ��� � 	 � � O ���� � /� �-5 UWV�X A�� 	 � � O ���� � � 	 � �
(12)

from which it can be shown that

[]\<> � > 7� J 5 UWV�X � � /�I^ ��� 	 � � O ���� � /� � / 7� � O ���� � � 	 � 5 UWV�X A� 	 � � O ���� � � 	 � (13)

Using this result with ��/� ���('- ��� in equation 9 yields

5 UWV�Z � X	
	 ��� 	 ��� O ���� � '-�� ���%�"-�� O ���� �� 	 � 5 UWV�X A� 	 � � O ���� � � 	 � (14)

where � ��� � ���� ��;N � ����� 7� is the sample covariance of the

observation. Defining .! ��6. U � X� � . U � X� , the parameters8 9 UbV'Z � Xd are the diagonal elements of

5 UWV�Z � X	
	 � 5$UWV�X ." � -  � '- 
 UWV�X � - � O � � '- � ��� � -
 � '- 
 UWV�X �(-�� O � � '- . 7 5 UWV�X � 5 UWV�X A5 UWV�X .  �"-# � '- 
 UWV�X �(-*� O � � '- . 7 5 UWV�X � (15)

With inventive use of discrete Fourier transforms and TBT
system solvers [3], it is possible to calculate the required
elements even for moderately large matrices



.

6. Conclusion

An algorithm has been presented for the constrained es-
timation of Toeplitz-Block-Toeplitz covariance matrices in
the presence of subspace interference. The algorithm used
is a generalisation of the standard method for estimating co-
variances under the Toeplitz constraint. It is expected that
the convergence properties of the algorithm are the same as
for the standard method.
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