Use of a general imaging model to achieve predictive
autofocus in the scanning electron microscope

F.C. Nicolls?® G. de Jager® B.T. Sewell ®

& Department of Electrical Engineering, University of Cape Town, South Africa
b Electron Microscope Unit, University of Cape Town, South Africa

This work outlines the development of a general imaging model for use in
autofocus, astigmatism correction, and resolution analysis. The model is
based on the modulation transfer function of the system in the presence
of aberrations, in particular defocus.

The signals used are related to the ratios of the Fourier transforms of
images captured under different operating conditions. Methods are devel-
oped for working with these signals in a consistent manner.

The model described is then applied to the problem of autofocus. A fairly
general autofocus algorithm is presented and results given which reflect
the predictive properties of this model.

The imaging system used for the generation of results was a scanning elec-
tron microscope (SEM), although the conclusions should be valid across a
far wider range of instruments. It is however the specific requirements of
the SEM that make the generalisation presented here particularly useful.
We have therefore confined our investigation to SEM.

1 Introduction

Traditional autofocus methods involve the use of a focus measure which ex-
hibits an extremum for the condition of best focus [4,14,1]. In general a search
is then required over the possible range of focal lengths. This requires that a
large number of images be taken, which places limits on the maximum speed
that the algorithm can achieve.

This search through focal lengths is unnecessary, however, in that the effects
on the image vary smoothly and predictably as a function of defocus [11]. In
this paper a very general model is developed for the dependence, and it is
shown how it may be used to efficiently effect autofocus.
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The section which follows characterises certain aspects of linearity in the im-
age formation process. It is demonstrated how a point-spread function can be
defined for the system. Following that is an overview of the basic idea that is
used in the development of an autofocus algorithm in the subsequent sections.
Noise reduction is an important aspect which needs to be contended with,
and section 4 discusses some of the associated problems and ways in which
they can be circumvented. Section 5 shows how a general model of the image
formation process can be constructed, and section 6 extends the use of this
model to autofocus. Following that is a discussion of some of the implementa-
tion details involved in the algorithm. Section 8 then assesses the performance
of the proposed method by providing results generated from a through-focus
sequence of images.

The imaging system for which results are presented is a scanning electron
microscope (SEM), operating in the secondary electron detection mode. The
instrument used was the Leica S440. The in-focus image for the sample set
used to generate the results in this paper is shown in Figure 1.

Fig. 1. In-focus image for sample set used in experiments.



2 Image formation in the SEM

For the purposes of this paper, the restriction will be made to image forma-
tion in terms of the detection of secondary electrons (SEs) with an Everhart-
Thornley detector.

For a single primary electron incident on a position (z,y) of a specimen, a
yield coefficient d(z,y) can be assigned such that ¢ is the average number
of resultant secondary electrons emitted. This means that for ng electrons
incident at (z,y), the number of secondary electrons liberated will be

nsg = 0(z,y)ng (1)

If an infinitesimal area element dxdy centred on (z,y) is considered, and time
dependence is introduced, it can be said that the SE current emitted from this
area is

dise = 0(z,y)J (z,y)dzdy (2)

where J(z,y) is the incident current density at the point (z,y). The total SE
current emitted from the specimen is then

= 7 75($,y)j(x,y)dxdy (3)

If the system is assumed isoplanatic [6] then the current density distribution
of the beam can be written

j(x,y) = jo(x_l‘o,y_yo) (4)

where (z,,y,) is the centre of the incident beam current distribution. Now, for
every point (z,,%,) of the centre of the beam, the total resulting secondary
electron current is

o0

ISE xmyo / (5 .’L‘ Y 1.70 —To, Y — yo)dxdy (5)
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which is just the convolution product

iSE(xo: yo) - 5(370’ yo) ® \70’(370’ yo) (6)



where ® represents the convolution operator, and J! (%o, Yo) = To(—Zo, —Yo)-

To a first approximation, the output of the detector is linear with respect to
isg [12, p.178]. Thus, if f(x,,y,) is the resulting signal for the beam centred
on (Z,,Y,), then

f(xoa yo) - GD 5($oa yo) &® \Z;I(xoa yo) (7)

where Gp is the assumed constant gain of the detector. With h(z,,y,) =
GD Jé(xo:yo)a

f(Zo,Yo) = 6(Z0, Yo) ® h(Z0, o) (8)

It has thus been shown that, under the conditions described here, image forma-
tion in the SEM can be considered to be a linear convolution of two quantities:

— A specimen dependent component, namely a two-dimensional field of sec-
ondary electron yield coefficients, and

— A system dependent point-spread function h(z,,y,) which, in conjunction
with the image field defined here, is effectively the current density distri-
bution of the electron beam scaled and reflected through the origin of the
coordinate system.

This result is an extremely important one because it characterises the linearity
of the image formation process in terms of observables.

The primary assumption made in the derivation is that of isoplanatism, which
implies the existence of a shift invariant PSF. Even if this assumption should
be invalid, the notion of an average or effective PSF is still useful, however.
The PSF would then no longer correspond to the current density distribution
of the beam as derived earlier.

3 Autofocus approach
Before continuing any further, an outline of the general approach to developing
the autofocus algorithm will be discussed.

In the Fourier transform domain, the convolution product in the previous
section can be represented by a simple point-by-point multiplication

Fwg, wy) = Awg, wy) H (Wi, wy) 9)



where the upper case functions are the Fourier transforms of the respective
lower case functions. w, and w, are the spatial frequency coordinates in the
Fourier transform domain. The quantity |H (wy, w,)| is the modulation transfer
function (MTF) corresponding to the point spread function A(z,y). If two
images are now taken of exactly the same area of the specimen, but using
different imaging conditions, then

Fi(wg, wy) = A(wg, wy) Hy (wg, wy)
Py (wg, wy) = Awy, wy) Ha(wz, wy) (10)

where the difference between H; and H, comes about because of this change
in settings. For purposes of this paper this change is considered to come about
due to a change in focal length, although in general other factors such as
changes in aperture can also be utilised [3]. The corresponding spatial domain
PSFs h; and hs can be said to relate to the current density distribution of the
beam at those positions where it intercepted the specimen. The ratio |F/Fy|
is now

_ ‘Hl(ww’wy”
| Ho(wg, wy)|

‘Fl(wiv’wy) (11)

FQ(WJ:’ wy)

which is an image independent quantity that varies according to the two PSF's
used in the formation of the images.

Note that the expressions derived above are for the ideal case of infinite-
extent signals. In practice some form of windowing is required to implement
calculation of the ratio F(wy,wy)/Fa(wg, wy) [5]. The effect of this windowing
is that the dependence of the specimen A(wg,w,) is never entirely removed
from the ratio. However, this effect is minimised if the number of pixels in
the transformed image is large with respect to the width of the corresponding
MTF.

The approach described here has been used for light-optical systems in depth-
from-defocus work [13,3,15,7], which has direct application to autofocus. Two
common methods in which this ratio is used for autofocus are:

— Lookup-tables are used which relate the ratio signal obtained to the distance
of the object from the aperture plane, or

— An expression for the defocus dependence on the MTF is derived, usually
using the thin lens approximation in conjunction with the aperture function.

A further common assumption is that of the MTF being roughly Gaussian
in shape. This condition facilitates storage of lookup-tables and derivation of
closed-form solutions for the specimen distance. Simulations for the S440 [9],



however, demonstrated that this assumption is not very accurate, except for
the in-focus situation.

For the case of the SEM, the first of these approaches is unfavourable due
to the large number of variable parameters in the image formation process.
Storage and calibration present a problem for parameter spaces of such high
dimensionality. The second approach, although better, proves to be restrictive
and sometimes inaccurate in its assumptions. A generalisation of this model
will therefore be developed, which appeals to fundamental aspects of the imag-
ing process. In section 5 characteristics are isolated which prove to be of use
in an autofocus context. Firstly, however, noise reduction in the ratio estimate
will be discussed.

4 Noise reduction techniques

Noise in the two-dimensional ratio signal presents a serious problem. It can
be shown that the probability distribution of the ratio of two Gaussianly-
distributed random variables is such that the mean does not exist. Thus the
average of a number of estimates of this ratio is not guaranteed to exhibit any
noise reduction. Because of this, alternative noise-reduction techniques have
to be developed and their validity justified. Some aspects of these techniques
are covered in this section:

— A model of the noise in the transformed images is given, and and the problem
with simple averaging presented,

— Noise-reduction methods which circumvent the problems are described and
their use justified.

An analysis of a microscope image in the frequency domain suggests that the
desired signal is contaminated by an additive noise component as well as an
overall offset. If Fimage(ws,wy) is the transform and F(wy,w,) is the desired
signal, then

| Fimage (Wa, wy)| = [ F(wa, wy)| + n(wg, wy) + C (12)

where n(w;,w,) is the random noise contribution (which is approximately
Gaussianly distributed), and C' is a constant offset which is independent of
defocus. It is assumed that this value C' can be estimated from the transformed
data.



Given the accuracy of this model, an estimate of the required ratio can be
formed as

|F1(w$:wy)| + nl(wzawy) — |Emage1(w$:wy)| - C
|y (we, wy)| + N2 (we, wy) ‘Fimage2(ww: wy)| -C

(13)

It can be seen that this ratio is contaminated by noise fields n; and n,, which
because of the inclusion of C' are guaranteed to be zero-mean. Thus, for any
(wg,wy), the values of the numerator and denominator can be considered to
be Gaussian random variables with means |F} (wy, wy)| and |Fy(wg, wy)| respec-
tively. This estimate of the required ratio becomes more accurate as the noise
standard deviation decreases.

Consider now the random variable Z = X/Y, where X and Y are Gaussian
random variables with mean values xy and ¥, and the same standard deviation
0. The probability distribution of Z can be calculated to be [10]

B v(2) Lev;z_z)? v(z) 1
“’Z(z)‘M{u(z) W) ”‘I’< u(z)>+2ﬂ<z)} )

where 1(z) and v(z) are

1, 1
I - 1
pe) = 528+ 5 (15)
2T Yo
U(Z) 20 20

and ®(x) is the usual error function defined as

B(z) = % [e v (16)

Plots of this distribution for a fixed value of zy/yo = 1/2 and changing o
are shown in Figure 2. This value of z/y, was chosen because it is fairly
representative of usual values in the MTF ratio.

The expected value E{Z} = [*_ zpz(z)dz of this distribution does not exist
since the integral does not converge [10]. This outlines the basic difficulty of
noise reduction by means of averaging of the ratio signal.

A possible solution to this problem lies in performing averaging before the
formation of the ratio [8, p.559]. Suppose we have p independent estimates of



Fig. 2. Probability distribution of Z for z¢/yo = 1/2 and changing noise

the numerator and denominator images, designated by Nimage k(wz,wy) and
Dimage x(wg,wy) for £ =1,...,p. The quantity

(1/p) 3k=1 [Nk (wa, wy)| = C
(1/p) ket [Dr(ws, wy)| = C

(17)

can then be shown to be a valid (and noise reduced) estimate of the required
MTTF ratio. This comes about essentially because the mode of the distribution
pz(2) becomes a better estimate of the value xy/yy in equation 14 for lower
values of o. This statement is justified by Figure 3, which demonstrates that
the mode is a more effective estimator of the ratio value for smaller values
of 0. Since the averaging reduces o, the estimate derived from equation 17
represents an improvement on the unaveraged estimate.

Rather than working with the two-dimensional MTF ratio, one-dimensional
representations can be obtained for the MTF in any plane through the optical
axis at a specific angle. This has advantages in that it is easier to work with
the 1-D signals. In the absence of coma, astigmatism, and distortion, the
MTF ratio is circularly symmetric [2], and the redundancy can be used to
reduce noise in the mapping from 2-D to 1-D. In this case if the median of
all samples at each distance from the origin is found, the result forms a noise-
reduced estimate of a cut through the MTF ratio at any angle. Here this
occurs because the median of pz(z) becomes a better estimate of x/yo for
smaller ¢. This is demonstrated by Figure 4. In the presence of astigmatism,
the same conclusion applies in a limited sense if a small sector surrounding a
radial line through the MTF ratio is considered.

In summary, noise reduction is achieved as follows:
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Fig. 4. Median vs. z(/yo ratio for changing noise

— A number of estimates of each of the numerator and denominator images
are averaged and then the ratio formed of these averages. This results in a
noise-reduced representation of the 2-D ratio.

— If the profile of a radial cut through the centre of the MTF is required, this is
obtained by considering the portion of the 2-D ratio in a sector surrounding
the line of interest. The median of the samples in this sector at each distance
from the origin forms a noise-reduced estimate of the 1-D ratio at that angle.

For the remainder of this paper it is assumed that wherever possible these
noise reduction techniques have been applied.



5 Model of image formation

If the denominator image F5 in equation 11 is chosen to be an in-focus image,
then |Hy(wy,w,)| is approximately unity and the ratio reduces to the MTF
corresponding to the first image. In this way it is possible to form estimates
of the MTF of the microscope for varying degrees of defocus.

The method was applied to a through-focus series of images, and profiles
of three of the resulting MTFs is given in Figure 5. The MTFs correspond

0.5mm — —
0.6mm - - -
0.7mm —

MTF
value

0 10 20 30 40 50 60
Frequency (pixels)

Fig. 5. Radial cuts through MTF's corresponding to images taken of a specimen at
three different distances from best focus.

to distances of 0.5mm, 0.6mm, and 0.7mm from best focus, with a working
distance of around 15mm and a magnification of 500x.

Of note is the apparent similarity between the MTFs for the different defocus
levels. Each MTF is to a good approximation just a dilation or contraction in
the horizontal direction of any other MTF. This property will be referred to
as the self-similarity in the MTF at different positions along the beam.

In order to get an idea of the width of the MTFs, Gaussian functions were
fitted to each. These Gaussians were best-fit in the sense that they minimised
the distance between the functions in the /2-norm. Converting these standard
deviations back to the spatial domain, the dependence of PSF width with
respect to defocus can be determined. Such a plot is shown in Figure 6. The
width can be seen to vary linearly with the amount of defocus.

Furthermore, the self-similarity of MTFs ensures self-similarity of the corre-
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Fig. 6. Standard deviation of best-fit Gaussians referred to the spatial domain plot-
ted as a function of the distance from focus. Also indicated is the best-fit straight
line to the data points

sponding PSFs by the Fourier relation

Wy Wy

F{f(an,by)} = F(2, ) (18)

where F represents the Fourier transform operator. Thus, it can be said that if
the distance from focus of an image is doubled, the resulting PSF will change
only by a stretching in the z-direction by a factor of 2.

These findings represent a very general model of the MTF for changing levels
of defocus. It can be shown that the properties outlined conform to the notion
of an idealised beam, where the motion of the electrons is strictly rectilinear
and the crossover infinitely small. The cross-section along the optical axis
through such a beam is depicted in Figure 7. The width of the beam at the
specimen is then given by

‘fac B d‘

s = aT (19)

Note that even if the beam does not precisely conform to this requirement, the
expression for the width can still apply differentially for a modified a, which
can be said to represent the effective aperture for the region of the beam in the
vicinity of the specimen. For this reason it may not be possible in general to
assign a fixed value to a for a given microscope under all viewing conditions.

The model presented here for the spatial distribution of the beam may seem

11
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Fig. 7. Cross-section through an ideal beam

to be based on rather dubious assumptions. Simulations show that spatial self-
similarity of the beam only becomes valid about 0.1mm from the crossover [9].
Furthermore, the idea of a zero-width crossover cannot be reconciled with re-
ality. With regard to the first point, it must be stressed that the model was
derived from frequency-domain representations, and will only be applied to
information gathered from this domain. In practice the space domain beam
profiles can exhibit a pronounced lack of self-similarity while the MTFs largely
retain this property. The reason for this can in general be attributed to the
fact that the spatial detail that introduces the discrepancies resides outside
the main frequency lobe representing the bulk of the signal energy. A second
source of possible error lies in the approximation that the signal from the
detector is a linear function of the scattered electrons. Experiments suggest
that the transfer function of the detector might be significantly more complex.
With regard to the nonzero beam crossover, this only becomes significant if
the sampling distance on the specimen for neighbouring pixels becomes small
enough that the beam distributions overlap. This is more likely to occur close
to focus with high magnifications, and the model will fail under these circum-
stances. However, in practice the failure is not catastrophic, again because it
is the frequency domain representation that is ultimately used.

12



6 Autofocus

The presentation of the autofocus method using the described model is greatly
facilitated my making use of a concrete example. Let us assume the situation
of a two-dimensional radially symmetric Gaussian beam,

1 — (22442

e 22 (20)

h/(x7 y) = 27"-0-2

where the standard deviation is related to the focal length and specimen dis-
tance by a function

|fw - d|

ola,d, fz) =a T

(21)

d is the aperture-specimen distance, which, if it can be found, yields the op-
timum focal length. As has been mentioned, the assumption of a beam with
a Gaussian PSF is widely made in the literature. Note that this restriction is
only made here for demonstration purposes; except for theoretical evaluation
it is dropped when the general autofocus algorithm is introduced.

The corresponding MTF is

o(d, )2
H(wa,w,) = o~ TG (W2 4w?) (22)

Considering the MTF ratio for two focal lengths f; and f5, we have

[Hy(woy wy)| @) —c?@atad (4 2y (23)
| Ha(wg, wy)|
which has a resulting variance of
1
O-I?es(d7 fli f2) = (24)

02(a, d, fl) — 0'2((1,, d, fg)

This relation contains two unknowns, a and d, so the system is under-constrained.
Note that the variance may take on negative values in the expression. This
occurs when the numerator MTF is wider than the denominator, and the ratio
grows without bound for large values of the independent variable.

Since, for reasons described at the end of the previous section, it may be
impossible to fix a for all conditions, more information is required to solve for
d. This information can be provided by means of a second MTF ratio which
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will yield an independent relation in the same unknowns. In order to form this
second ratio, a minimum requirement is that one further image be taken at
focal length f3, and the ratio formed with either of the existing two images. a
can then be eliminated from the two resulting relations, and the desired value
for the focal length found. This value for d can be shown to be unique. Thus
under the Gaussian assumption a closed-form solution for d exists using three
images taken at different focal lengths.

The way in which the Gaussian assumption is overcome is by making use of a
template which is representative of the system MTF. It is therefore assumed
that the MTF at every defocus level can be accurately described by a scalar
value which gives the factor by which this template must be compressed to
yield the actual MTF. For the general case where the shape of the MTF is
specified by a template function rather than restricted to Gaussian, similar
requirements for autofocus may be expected to exist since the number of free
parameters is unchanged. Three images taken at different focal lengths are
necessary and sufficient to completely specify d.

Suppose that the template function for the MTF is Hy(x). It is assumed that
the MTF of the second image is given by

MTF, = H,(kz) (25)

for some value of k. The models that the two MTF ratios conform to are then

MTF;  Hy(kkiz)
MTF,  H(kz)
MTF,  Hy(kx)
MTFs;  H(kkox)

(26)

Here k; and k5 represent the factors by which MTF; is wider than MTF; and
MTF; respectively. Equation 19 can be used to derive relations between these
two factors and the imaging configuration, namely

- 81(6% d, fl) _ |f1 — dlé
ki(d, f1, f2) = so(a,d, f2) ~ |fo—d| fi
_ 53(aadaf3) _ ‘f?’ _d|é
ko(d, f2, f3) = so(a,d, fo) ~ |fo—d| f3 0

with s the beam width at the specimen. Note that since the ratios are inde-
pendent of a, no precise definition of what is meant by the width of the beam
is required if this development is followed.
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If the shape of the template is Gaussian, the example at the start of the section
shows that a unique solution exists for d. It can be shown that the same is
true for k (to within an arbitrary sign change). Thus, given the variance of the
two MTF ratios, there is only one combination of (k,d) that will result in the
model being consistent. The method can now be inverted: if the MTF ratios
are calculated according to the model for each combination of (&, d), there will
be a unique case where the calculated ratios coincide with the actual ratios
derived from the data. This lays the foundations for a search method to find
the required aperture-specimen distance for an arbitrary template.

Note that for a non-Gaussian template function, the guarantee of uniqueness
is compromised. However, experience shows that actual MTF's generally adopt
the form of a Gaussian, if not the precise shape. Thus it is not expected that
this will constitute a problem.

A further point of interest is that the value obtained for k is representative
of the width of MTF,. The procedure demonstrated here is applied to one-
dimensional signals which are derived from a cross-section of the beam through
the optical axis. By reapplying the procedure to cross-sections at different
angles through this axis, a complete representation of the intermediate MTF
can be constructed. The same can be said for MTF; and MTF3. This can be
used to detect and correct for astigmatism, and can give an indication of the
resolution of the instrument at any defocus level.

7 Algorithm implementation

The way in which the ideas discussed are implemented is to define a distance
measure for comparing the sets of actual ratios and calculated ratios. These
measures prove to be something of a difficulty due to noise in the images,
which tends to obscure the ratio data in regions where the numerator and
denominator used in forming the ratios become small. The only fundamental
restriction on the distance measure is that it be zero if and only if the sets
of ratios are identical. This is a necessary and sufficient condition to ensure
a unique solution under the Gaussian assumption. Finding the optimal focal
length then reduces to finding the minimum of this distance measure over all
space of (k,d).

A number of distance measures were tried in the implementation. It was found
that a modification by a weighting function of the squared difference metric
was most successful. Although this modification violated the condition re-
quired for uniqueness, this proved not to be a problem as long as a good
starting point for the search could be estimated. The Gaussian example de-
scribed previously provides the grounding for making such an estimate. The

15



measure that was ultimately used was

ds(ratiol) (Ractb Rgenl) =

min {| / (Race1 () — Ryon ()2 H, (k1) da|,

o0

[ (B @) = (Rgem (w))‘l)QHt(kw)dwl} (28)

where d; ..., is the difference contribution for the first set of ratios of which
R is the actual ratio signal obtained from the data and Rgen: the ratio
calculated for and specified combination of (k,d). R{"Y(z) is the reciprocal
ratio, which may not be equal to R.., (x) due to the noise reduction procedure.
The combined distance is then

S(ratiol) + ds(ratio2)

where d; . ,) 1s similarly defined. Note that the operation of taking the min-
imum of the two options ensures that only ratios that go to zero for large
values of x are compared. This is necessary because if ratios are compared
which grow without bound the distance would become infinite for compared
ratios with very small discrepancies. The weighting function H; in the measure
emphasises those portions of the signal which are less prone to influence by
noise.

Figure 8 shows a contour plot of the theoretical search space under the Gaus-
sian assumption for a particular imaging configuration. The situation corre-
sponds to images taken at defocus distances of 0.2mm, 0.5mm, and 0.7mm,
again for a working distance of around 15mm. Shown in Figure 9 is a compara-
tive plot obtained experimentally from actual image data and a representative
MTEF. The change in overall value is simply a result of a different normalisation
for the two plots.

8 Results

A series of results were generated by applying the algorithm to all combina-
tions of three images of a through-focus image series. The images spanned a
range of defocus distances from Omm to 1.2mm, with in-focus working dis-
tance of 15mm and magnification 500x. Results are given in Figure 10. Each
plot (a)-(f) presents the results for a fixed distance from best focus of the
intermediate image used in the prediction. The solid horizontal line in each

16
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Fig. 8. Contour plot of theoretical search space to demonstrate sensitivity for specific
case (working distance 15mm) under weighted squared difference measure. The plot

shows how the value of the difference measure changes when varying values of k (the
MTF stretch factor) and d (the aperture-specimen distance) are assumed.
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Fig. 9. Contour plot of the actual search space for specific case (working distance
15mm under the weighted squared difference measure. The plot shows how the value
of the difference measure changes when varying values of & (the MTF stretch factor)
and d (the aperture-specimen distance) are assumed.

case indicates this distance. The vertical dotted lines partition the plot into
separate prediction sets, each of which correspond to an experiment using dif-
ferent input data. Since three images are required for the predictions, the two
crosses in each set indicate the distances from focus of the additional images.
For example, consider plot (a) in Figure 10: the leftmost interval corresponds
to input images at the three defocus distances 0.1mm, 0.2mm, and 0.5mm,
with 0.2mm being the distance for the intermediate input image. For each
case the prediction process is applied, and the distance as calculated for this
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intermediate image plotted using a star. The situation for correct prediction
thus corresponds to all the stars lying on the horizontal line. Note that in
some cases where the prediction procedure fails, the location of the star may
not appear in the plotted range, and is hence absent.

The plot demonstrates two basic trends:

— The prediction is fairly accurate if the intermediate MTF is close to focus.
For points where the actual distance is large, the reliability tends to break
down.

— If the prediction fails for images which are close to focus, then generally it
seems that it occurs when at least one of the pairs of images used in the
formation of the ratios are close together.

The cause of the first trend can be explained in reference to the width of the
MTF as a function of the distance from the crossover. In a previous section it
was shown that this relation is hyperbolic. Thus, near to focus the MTF is very
wide, falling off rapidly as the distance is increased. Now the first zero of the
ratio will be the same as the first zero of the numerator MTF. Thus the basic
shape of the ratio is dictated by the numerator. The effect of the denominator
MTF is then to alter the shape of this ratio between the origin and the first
zero. Clearly this is a far smaller effect to detect than the change in the zero
position. If the numerator MTF now becomes narrow, the deviation caused by
the denominator MTF profile becomes less significant. Huge changes in this
denominator will then cause only marginal changes in the ratio signal. In the
presence of noise this becomes catastrophic to the prediction process because
the distance measure no longer exhibits a suitable minimum.

The observation that the prediction fails more readily if the images forming
the ratio are close together can also be simply explained. In the limit as the
distance between the images goes to zero, no prediction can be made because
data has been irrecoverably lost. It follows then that if the images are close
together then the effectiveness of the prediction will be hindered. The discus-
sion of the first trend also makes it apparent that this closeness has to be
considered in relation to the actual distance of the images from the crossover.
MTFs separated by a fixed distance far from focus will differ from one another
far less than MTFs separated by the same distance but nearer to the beam
Crossover.

Essentially, the prediction fails more readily for image sets far from the crossover,
which correspond to an overall narrower system MTF. In the case of the SEM,
this failure is not catastrophic. This is because of the ability to change the
magnification of the instrument, and hence affect the overall MTF width. For
example, if it is found that the MTF is too narrow for effective prediction to
be made, a reduction in magnification can effectively shift the process into a
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region where the MTFs are wider and the algorithm has more chance of suc-
cess. This suggests an iterative application of the algorithm at progressively
higher magnifications, until the desired accuracy is obtained. An investigation
into the detailed effects of change in magnification on the autofocus algorithm
has not been performed, so results relating to this will not be presented.

It should be emphasised that at this stage there is no existing real-time imple-
mentation of the algorithm presented here. All the calculations have been done
off-line on an image sequence which was captured under known conditions. The
speed of an implementation would naturally be hardware dependent.

9 Conclusions

It has been demonstrated in this paper that aspects of the image formation
process in the electron microscope constitute a very general model for use in
autofocus and astigmatism correction. This model is not restricted to electron
microscopy; many imaging systems exhibit the property of a self-similar PSF
which varies linearly in size with the distance from focus.

An autofocus algorithm was developed using this model. The algorithm is very
general: all that is required is a template function representative of the system
MTF, and three images taken at different focal lengths. Using this information
it is possible to calculate the out-of-focus distance for each of these images,
and consequently the optimal focal length can be found. Except for finding
the template function, no calibration of the system is required.
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Fig. 10. Prediction results for through-focus image series under the weighted squared
difference distance measure.
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