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Abstract— Signal detection in certain noise environments
fits naturally into a statistical hypothesis testing framework.
In order to have moderately tractable models, the noise is
often assumed to be additive with a multivariate normal dis-
tribution. Additionally, computational complexity require-
ments may demand the assumption of spatial stationarity,
particularly in the case when the data is 2-dimensional.

Naturally the success of such models is dependent on the
degree to which the assumptions are valid. For example,
the assumption of spatial stationarity is thrown into serious
doubt in typical images, where actual structure exists which
might not be amenable to a simple statistical characterisa-
tion. In an attempt to improve the validity, we make use of
the notion of subspace interference. This assumes that there
is an additional unknown signal component present in the
data, which is required to lie in a low-dimensional subspace
of the original observation space. Invariant hypothesis tests
can then be formulated for this problem, which are optimal
in a fairly powerful sense.

The work to be presented outlines some of the theory in-
volved in specifying the tests and estimating the model pa-
rameters from actual data. Since the emphasis is on im-
age rather than signal processing, special care needs to be
taken in developing computational methods for the solu-
tions: simple-minded approaches have massive computation
and memory requirements.

|. INTRODUCTION

A very natural way of dealing with the problem of de-
tection of transient targets in a signal is to use a sliding
window approach. This has the advantage of simplicity
and computational appeal, although it does require the as-
sumption that detection can be regarded as a localised op-
eration.

The strength of the sliding window method is hugely
enhanced if the assumption of spatial stationarity can be
made. This allows for a tractable and simple signal model
for which a detector can be implemented with minimal dif-
ficulty. The advantages are so great that it is questionable
whether the sliding window method should be used at all
if this assumption is significantly violated. In that case,
time-frequency or time-scale representations are probably
more useful.

In some situations the assumption of stationarity is com-
promised by certain interferences in the signal. For exam-
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ple, a signal may be contaminated by a DC offset or by an
approximately linear trend which adds to it. Images, too,
often contain regions which are very smooth, but which are
at an indeterminate intensity and which may vary slowly
with changes in spatial position. Such interferences may
be modelled as subspace interferences, because they are
constrained to lie in some linear subspace of the space of
observations. They are sufficient to compromise the sta-
tionary assumption.

It would be a shame to have to abandon the sliding win-
dow approach because of these relatively simple interfer-
ences. Fortunately, the notion of invariance in hypothesis
testing can be used to specify detectors for these situations
which conform to a fairly natural optimality criterion. The
design and implementation of such detectors, particularly
for the case of images, was the subject of a previous tech-
nical report [5].

In that report, it was assumed that the interference sub-
space is known, and that the nominal distribution of the
data in the window (before interference is added) is multi-
variate normal (MVN) with known parameters. In real sit-
uations, however, the interference subspace might be un-
known and the model parameters will probably have to be
estimated from a sample of target-free data. The target
to be detected will usually also have to play a role in the
specification of these parameters, since at best any given
detector can only be optimal for a restricted class of sig-
nals.

This report assumes that the interference subspace has
been specified in advance, and discusses issues related to
estimating the covariance matrix model parameters. For
simplicity, only the case of 1-D signals will be dealt with,
although with some effort the results can be extended to
2-D.

Il. OVERVIEW OF DETECTION IN COLOURED NOISE

Subspace interference is a particular type of interference
where every observation has an unwanted additive contri-
bution which is constrained to lie in some linear subspace
of the original observation space. Thus if the underlying
random process is distributed according to x : N[m, T] and
the independent realisations of this process are labelled
X1,--. ,Xm, then the observed data are yq, ... ,ym With

yj:xj+U|cJ~. (D)



In this equation U, is a matrix which spans the interfer-
ence subspace, and for convenience we may assume that
UTU, = 1. The constant vectors c; differ for each obser-
vation, and are completely unknown. For definiteness, we
assume that the covariance matrix T has a Toeplitz struc-
ture, in accordance with the stationary assumption.

It is possible to formulate a constant false alarm rate hy-
pothesis test which is invariant to such interferences. Some
of the theory and computational issues involved will be
dealt with here. The two cases of detection with and with-
out an invariance subspace are discussed in this section.

A. Detection without invariance

This is by far the simpler of the two cases: the hypothe-
ses are X : N[mo, T] under Hg and x : N[my, T] under H;.
The log likelihood ratio for this problem is [7]

L(X) = (m1 — mo)TTil(X — Xo), 2

where Xo = 1/2(m; + mg). The optimal test is to compare
this to a threshold p, and select Hy when this threshold is
exceeded: choose H; when

(my—mp) T H{x—x¢) > p. (3)

Letting w" = (my; —mg)T T2, the decision inequality can
be written as

w'x > p+wTxo, 4)

which shows that the inner product w'x is sufficient for
the decision process. For purposes of implementation in
a sliding window framework, this statistic can be calcu-
lated (for each signal location) by means of a convolution
operation with template w.

It is simple to calculate w for this problem: since w' =
(my —mg)TT~L it can be seen that

Tw = mi; — Mo, (5)

which is just a linear regression with a structured covari-
ance matrix T. Since T is Toeplitz, w can be found by
standard Levinson-Durbin recursion [2].

B. Detection with invariance

Suppose U = (U; Uy) is a unitary matrix, with U, span-
ning the interference subspace to which we require invari-
ance and Uy spanning the complementary subspace. It
was shown in [5] that y = U[x is a maximal invariant
statistic for the invariant decision problem.

The distribution of this statistic is N[UJ;mq, U], TUH]
under Ho and N[UJ,my, U], TUy] under Hy, so the invari-
ant decision rule is to choose H; when

(Ulmy — Ul imo) T(U], TUH) YUl x — Ufix0) > p, (6)

or equivalently, when
(my —mo) "TUx (U TUW) UL (x—x0) > . (7)
Taking the same route as for the previous case, we define
w' = (my —mg)TUx (U], TUR) U], (8)
and as before the decision becomes choosing H; when
WX > p+w'xo. 9)
Using the definition of wT, it can be seen that
w = Uy (UL TUR)~TU (Mg — mo). (10)

It is much less obvious how to find the vector w for this
situation. However, some of the methods provided in [5]
provide a solution. Partition the matrix C = UTTU as

o (YITU U[TUW) _ (Cu Cp
ULTU ULTUy Ca Cz
A12>
. (12
Asp (12)

Expanding the identity CA =1, it can be shown that

(11)

with an inverse (since U1 = UT) of

A— U;I-T_1U| UFT_luH _ A
ULT71U| ULTilUH Aoy

Cot = App— AnA A, (13)
from which the following relation results:
(ULTU) L =U] T tuy —
ULT U (U] T tu) 0T T tuy. (14)
Noting that UyU, =1 —U,U, we can form the product
Un (UL TU) Y] = (1 = U U [T -
Tl T U)ol T Y0 -0 U, (@5)
which simplifies to
U (UL TUR) U] =T
Ty T U)ol T @16)
Substituting into equation 10, the vector w is given by
w=T7"1m;—mg) —
T (UTTHU) U T (e —mg). (17)

Since the Toeplitz system solvers can be used to find
both T~1(my —my) and the fairly low-dimensional matrix
T-1U,, this quantity can be calculated without too much
difficulty. Note that at no stage is it required to specify Uy
explicitly.



I1l. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
WITH SUBSPACE INTERFERENCE

In the previous section it was shown that it is possible
to design a detector which is invariant to subspace inter-
ferences. Once this detector is specified, the actual imple-
mentation is no different from that of a simple detector in
uncorrelated noise. However, the issue arises of how to
find the model parameters to be used in this detector.

It is assumed that the parameters of the random process
X N[0, T] need to be estimated. However, realisations of
this process cannot be observed directly; each observation
is contaminated by subspace interference. The observed
data yi,-..,ym for the independent realisations Xi,...,Xm
of the process are related to one another by equation 1.

The problem described here is amenable to a missing
data interpretation: the component of X which lies in the
interference subspace is effectively destroyed by the un-
known contribution c;, and is therefore useless for inferen-
tial purposes. This is easily demonstrated by expanding the
observation y; onto the orthonormal basis U = (U; Uy),
where Uy spans the subspace complementary to U;:

.
(U Un)'yi= (8::) (xj +Uicy)

_ (Ui 4 (G
B ULXJ' 0/°

Since c;j is completely unspecified, the first i dimensions
of this vector are effectively destroyed by the interference.
In the original coordinate system, this means that only the
component y§ = Uf,x; = U]y; of the observation is valid
for estimating the parameters in the distribution of X.

It might not be completely evident why it is impor-
tant to ignore the interference subspace when estimating
the structured covariance matrix. The following scenario
should make the need evident: suppose the underlying dis-
tribution is two-dimensional with an identity covariance
matrix. The solid circle in figure 1 shows a contour of
constant probability for this case. If there is interference
in the direction of x,, the sample covariance in this direc-
tion will be increased. Thus the overall sample covariance
might be as represented by the dashed ellipse in that fig-
ure. Now since a Toeplitz covariance matrix has the same
value along the major diagonal, the variance must be equal
along all the axes of the coordinate system. The dotted
contour in figure 1 therefore indicates the constrained esti-
mate. Considering only the interference-free subspace X1,
it can be seen that the variance in this dimension has been
overestimated due to the interference in X».

Returning to the problem, the portion of the data that
is uncorrupted by interference is Y®: N[O,U[, TUy]. Itis

(18)

Fig. 1. Contours of constant probability for the actual distri-
bution (solid), the sample covariance (dashed), and the esti-
mated covariance (dotted).

required to estimate T from m samples of this quantity,
under the constraint that T be Toeplitz. If mis large, maxi-
mum likelihood estimation is approximately optimal. This
is typical of many signal processing problems in engineer-
ing — there is too much data rather than too little. Thus
the more subtle estimation procedures are effectively su-
perseded by the simpler likelihood formulations.

The EM algorithm is commonly used for maximum
likelihood estimation of Toeplitz covariances. This is an it-
erative algorithm whereby a difficult parametric optimisa-
tion problem is embedded inside a higher-dimensional but
computationally more tractable one [1]. It is an ideal for-
mulation for the problem outlined here: the hypothetical
u-dimensional complete data observations are z; : N[0, C],
with C a circulant matrix representing the parameter to be
optimised over, and the actual useful observations yf take
the role of the incomplete data. The embedding is such
that the interference-free data x; (which is never observed)
constitutes the first r elements of the u-dimensional com-
plete data samples z;. Thus

Xj = lrxuZj, (19)

where |y is the r x u identity matrix of zeros with ones
along the main diagonal. The useful observations y‘l? are
related to the complete data z; by

¥§ = Ulyj = Ufix;

= Ul lrxuzj- (20)

The reason for the EM algorithm being effective in this
problem is because a circulant matrix is very easily diag-
onalisable. The details of the EM solution to this problem
is the topic of the next section.



The method of solution redefines the problem slightly:
instead of maximising the likelihood over the set of all
Toeplitz matrices, the maximisation is performed over the
set of all matrices with positive definite circulant exten-
sions. This is a standard formulation which can be found
for example in [4]. The covariance matrix T can be ob-
tained from the corresponding complete data circulant co-
variance matrix C by
(21)

— IrXUCIrxu

A notable feature of the EM algorithm is its use of a
missing data formalism to arrive at the required solution.
Since the problem of subspace interference is also con-
ducive to a missing data interpretation, the method is fur-
ther justified for use in this situation.

IV. EM FORMULATION OF SOLUTION

The quantity Y®= U[[, X is all that is observed of the hy-
pothetical u- dlmen5|onal complete data Z : N[O, C], where
C is circulant. For m independent observations, the com-
plete data probability density function is

aZm)_
(2.,.[) mu/2log|c| m/2e ZZJ IZTC Zj

pc(Zl, .
(22)

It is simpler to consider the problem in a rotated coordinate
system where the covariance matrix is diagonalised.

Let W, be the u-dimensional unitary DFT matrix. This
matrix diagonalises the class of all u x u circulant matri-
ces [3, p. 150]. The transformed complete data D = W ,Z
is therefore distributed as D : N[0, Z], with = = W ,CW/, =
diag[o1,... ,0y] a diagonal matrix comprised of the eigen-
values of C. The log-likelihood in this rotated coordinate
system is

1m 1
L(Z,dy,...,dyn) = K——Iog|Z| EZ dj
mY 1 m |dj(k
—K-2' logoy—> , (3)
2 Z 2k 1121 Ok

where dj = [dj(1),--- ,dj(U)]T.

Consider the parameter to be estimated to be the diago-
nalised covariance matrix Z, which uniquely specifies the
complete data circulant covariance. The EM algorithm
proceeds as follows: for the E (expectation) step, the cur-
rent best estimate =(P) of the parameter is used to find the
expected log-likelihood function L(Z,ds,...,dm), condi-
tioned on the observations y§, ...,y Inthe M (maximisa-
tion) step, this conditional expectation is maximised with
respect to the parameters to yield the next iterate =(Pt1).

For the problem addressed in this paper, these steps will
now be formalised.

A. Expectation step

Given the previous best estimate =(P) of the parameter as
well as the incomplete data y5, ... ,yr, the expected value
of the complete data log likelihood is

u
E{LEP,ye, ... ye =K -1 > logoP)

1o & ||zp’y17
22,2,

B. Maximisation step

E{|dj(k

N 7yﬁ1}. (24)

This involves finding the new parameter Z(P*1) which
maximise the conditional expected log-likelihood in equa-
tion 24. Taking the derivative with respect to o) and setting
to zero yields a necessary condition for a maximum (VI):

OE{LIZP y8,....y&} m1
d0j 20
mE(ORIEYE e
Zx %
=0 (p+1) _

ZLE{|d | ‘z 7y17 'aym} (25)

Given the values of each of the o ")

of the parameter is

, the new estimate

oiPtY 0
s(p+l) _ (26)

0 olpty

Since C(P+1) = wiz(Ptw,, the improved covariance
matrix estimate T(P+1) can be obtained using equation 21.

V. CALCULATING THE ITERATION

The parameter estimate ol(pH) in equation 25 is ex-
pressed in terms of the expectations
E{|d;(1)]*|=P @7)

7y$7"‘ 7yﬁ1}7

which have yet to be calculated. Taking the same approach
as Miller et al. [4], we note that ol(p+1) in that equation is

identical to the Ith diagonal element of the matrix

1 m
T = o L EEED N R @)
J:



Since the observations are independent,
E{did]|=P,y5,... ,ya} =E{did]|I= 5} (29)

To calculate this expectation, the joint distribution of dj
and y§ is required: with Kyy = UL T(PUy and Kgg = z(pi

we have
Y st - n | () (Kw Ky
(dj> ‘Z ‘Nio) Kay Kad/]"

The expectation Kgy = K;r,d can be calculated as follows:

(30)

Kdy: E{djy?T}
= E{djz]}I[.,Un
= E{djd] }WuluxrUn

= sPw{uy, (31)

where Wl(f) contains the first r columns of W. The con-
ditional distribution of d; given y® and =P is [6]

dj| =P,y N[KayK 'y, =P — Ky K 'K yal,  (32)

from which it can be shown that

t - t, —
E{d;d; |Z(p)ay?} = KdyKyyly‘jey(je Ky Ky + s(P)
KayKyy Kya-  (33)

Using this result along with y‘l? = ULyj in equation 28
yields

z((jz+1) = KdyK;leL S)/yUH K;leyd + Z(p) _
KayKy,'Kya,  (34)
where Sy = L5™, y;y! is the sample covariance of the

actual observation. Writing explicitly, the parameters
crl(p+1) are the diagonal elements of

s — 5w Uy (UL TP UR) U] S,y Un
(ULTPU) Lutw( =P 4 s

sPWD UL UL TPUL) U w =P, (35)

With inventive use of discrete Fourier transforms and

Toeplitz system solvers [4], it is possible to calculate the
required elements even for very large matrices T.

VI. CONCLUSIONS

Optimal detectors have been derived for the problem of
detecting a signal in environments of just noise as well

as noise with subspace interference. Efficient methods of
calculating the parameters for these detectors have been
developed for the case where the covariance matrix is
Toeplitz, corresponding to the assumption of spatial sta-
tionarity.

The question of how to estimate the covariance matrix
parameters when the observations are subject to subspace
interference has also been discussed. A modified EM iter-
ation is derived which ignores data contributions which lie
within a known linear subspace.
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