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Abstract

Graph cuts have proven useful for image segmentation

and for volumetric reconstruction in multiple view stereo.

However, solutions are biased: the cost function tends to

favour either a short boundary (in 2D) or a boundary with

a small area (in 3D). This bias can be avoided by instead

minimising the cut ratio, which normalises the cost by a

measure of the boundary size. This paper uses ideas from

discrete differential geometry to develop a linear program-

ming formulation for finding a minimum ratio cut in arbi-

trary dimension, which allows constraints on the solution to

be specified in a natural manner, and which admits an effi-

cient and globally optimal solution. Results are shown for

2D segmentation and for 3D volumetric reconstruction.

1. Introduction

Interactive graph-based image segmentation algorithms

are useful and powerful. Boykov and Jolly [2] popularised

the approach of having a user specify a number of interior

and exterior seed points in a segmentation, and of using a

graph cut algorithm to find the best solution based on a cost

function derived from image data. The cost is defined in

terms of regions and boundaries simultaneously: a prefer-

ence for each region element being inside or outside the ob-

ject is found using models obtained from user input, while

boundary elements are preferred if they coincide with image

structures that are likely to be edges.

The method also works in 3D, largely because there is a

one-to-one correspondence between cuts in the constructed

graph and valid object boundaries. However, costs are re-

quired to be positive (or reducible to positive via reparam-

eterisation, which is possible if the objective function is

submodular [9]), so there is a shrinking bias in that small

objects with short boundaries are favoured. Vogiatzis et

al. [18] propose a remedy by including a ballooning term

for the case of volumetric reconstruction. However, while

modifications of this form exert a general outward pressure

on solutions they are poorly directed, and it is difficult to

specify an appropriate weight for the normalisation since

region and boundary costs are not obviously commensurate.

To mitigate these shortcomings methods have been pur-

sued that instead minimise a ratio cost, where a measure of

the size of the solution region is included in the denomina-

tor. For example, for the 2D case Cox et al. [4] normalise

a boundary cost by the area of the segmented object, and

Jermyn and Ishikawa [8] propose a ratio cost of boundary

flux per unit length. Tractable algorithms for performing

the minimisation are provided. A unified treatment of ra-

tio functionals is provided by Kolmogorov et al. [10], along

with a solution method based on parametric maximum flow.

In all of these cases the ratio functionals have no apparent

size bias.

The approach adopted in this work is to use a ratio of

total cost to total length, which in the case of boundaries

relates to the objective of minimising cost per unit length of

boundary in the solution [19]. It has been shown that the

resulting minimum ratio cycle problem can be solved in the

2D case, but the methods used do not apparently extend to

3D. Specifying the boundary conditions that determine the

solution and eliminate the trivial null solution can also be

problematic.

In addressing a related graph-based method, Grady [6, 7]

has highlighted the importance of using discrete differen-

tial geometry in formulating segmentation problems. He

makes reference to earlier work by Sullivan [15]. Specifi-

cally, there is an intimate relationship between regions and

boundaries in any valid solution to a segmentation problem,

and these can be expressed in terms of incidence matrices

of associated geometric entities. Mattiussi [12] elaborates

lucidly on the principles and structures involved. In short,

the tools of differential geometry can be used to add struc-

ture to a higher-dimensional segmentation that is analogous

to the structure added by graph planarity in the 2D case.

The geometric requirements of a valid segmentation can be

added to the problem formulation and make it much easier

to solve.

In this work we provide a general formulation for glob-

ally minimising a large class of ratio cost functions that ef-



fectively subsumes many of those previously suggested. For

ease of interpretation we restrict the space of admissible so-

lutions in the discretisation, although this restriction can be

removed at the cost of permitting solutions that less obvi-

ously correspond to regions with boundary. The method

permits ratio terms based on both region and boundary el-

ements in both the numerator and denominator, and there

is no restriction on the sign of numerator costs. Region

and boundary constraints can be expressed explicitly, and

the solution is guaranteed to have the required topology

in terms of the interior and exterior of the segmented ob-

ject. We demonstrate the use of this formulation for 2D and

3D segmentation problems, and show that the absence of a

shrinking bias makes it easier to obtain the desired solution.

The main contributions of this work are the following:

• we show how discrete differential geometry can be

used to impose consistent interior/exterior constraints

on segmentations in a ratio cut framework,

• we present an efficient algorithm for finding the min-

imum ratio cut that works in dimensions higher than

two, and that can be extended to incorporate other

Markov random field (MRF) models,

• we demonstrate that the addition of geometric con-

straints permits tractable solutions to the minimum

cut problem with arbitrary (i.e. positive or negative)

weights.

Section 2 presents the differential geometry principles

that are relevant to the problem. Section 3 discusses linear

fractional programming, which is important in the ratio cut

problem. The optimisation solved in this paper is formu-

lated in Section 4, along with requirements for the discreti-

sation used. A fast minimum cut maximum flow implemen-

tation is given in Section 5, along with an application in 2D.

In Section 6 we show how the method can be used to solve

an image-based cost function for 3D reconstruction, namely

squared error per unit projected area, which does not exhibit

a shrinking bias and can be globally optimised (admittedly

for assumed known visibility). Section 7 discusses results

and concludes.

2. Discrete geometry

Graph algorithms generally make no assumptions on

topology. However, if there is additional structure in the

graph then this can almost certainly be used to develop spe-

cialised algorithms with lower computational complexity.

For example, the complexity of the maximum flow algo-

rithm for general graphs can be considerably reduced if the

graph is planar [1]. In other instances, a restriction in the

topology can make a hard optimisation problem tractable.

Planar graphs admit tractable algorithms primarily due

to the presence of strong geometric duality relationships. A

graph drawn in the plane induces a set of faces, with exactly

two faces adjacent to any edge. The dual of a planar graph

can be constructed procedurally: a dual node is created for

every face or region (including one dual node for the exte-

rior face), and dual nodes are connected by a dual edge if

the corresponding faces share an edge in the primal graph.

The dual graph is also planar, and the dual of the dual is the

primal. Figure 1 demonstrates the equivalence between a

path in a primal planar graph and a cut in the dual graph.

Figure 1. Duality between cut and path for a planar graph. A path

(thick solid yellow line) is defined by the dual edges cut (dashed

blue lines) between two (dual) node sets. The dual node for the

exterior face is not shown.

If edges are directed then the faces can be coherently

oriented: one will be to the left of the edge, and one to

the right. For any directed cycle in the graph, this makes it

possible to differentiate between faces inside the cycle and

those outside. We use the convention that the interior of the

object is to the left of a directed edge, so boundaries enclose

regions with an anticlockwise orientation.

The tools of discrete differential geometry provide a for-

malism for this duality [14]. The relevant geometric en-

tity is a simplicial complex (also just referred to as a com-

plex), which can be described by a set of incidence relation-

ships on lower-dimensional component simplices. For the

2D case just presented the simplices are the faces, edges,

dual edges, and vertices in the planar graph. Vertices are 0-

dimensional simplices, edges are 1-dimensional simplices,

and faces are 2-dimensional simplices. The incidences

specify relationships between these simplices. For example,

for the triangular mesh in Figure 1 each face (2D simplex) is

incident to three edges (1D simplices), and each edge is in-

cident on two endpoint vertices (0D simplices). Simplices

can be assigned an orientation, and the signs of the inci-

dence relationships can be specified consistently [12].

The incidence relationships between simplices in a com-

plex can be expressed algebraically. The vertex-edge inci-

dence can be represented by the node-arc incidence matrix

A, where each row corresponds to a vertex and each col-

umn to an oriented edge. This matrix has nonzero elements



only where a directed edge is incident to a vertex, and a sign

convention can be adopted where the value is +1 where the

edge leaves a vertex and −1 where it enters. This matrix

can also be interpreted as a differential operator that takes

a set of edges (indicated by a vector y with elements in

{0, 1}) to a set of nodal boundary vertices (represented by

z) through the relation z = Ay. If the set of edges consti-

tutes a simple directed path then there will be exactly two

nonzero elements in z: one with a value +1 corresponding

to the vertex that the path leaves, and one with−1 where the

path enters. In terms of duality, AT is the incidence matrix

of dual faces to dual edges.

Similarly, for the 2D case, let C represent the edge-face

incidence matrix with a value +1 where an edge is incident

to a face and is coherently oriented and −1 where incident

and anti-coherently oriented. This matrix also represents

the differential operator that maps faces to directed bound-

ary edges. Furthermore, CT is the incidence matrix of dual

nodes to dual edges. In the planar case C is a cycle matrix,

and each column can be considered to relate to an oriented

elementary cycle [16]. Since the boundary of a set of faces

is a set of closed cycles and cycles have no boundary ver-

tices, the orthogonality relation AC = 0 must always hold.

Grady [6, 7] provides a detailed treatment of the subject,

with clear examples.

Most importantly, the notion of a simplicial complex can

be used to extend planarity and planar duality to higher di-

mensions. In 3D, the geometric entities in the primal com-

plex are cycles (or cells), faces, edges, and vertices. Cycles

correspond to voxels, there are exactly two voxels adjacent

to every face (which has an orientation), faces are bounded

by edges (also oriented), and each edge is incident on ex-

actly two vertices. Referring to the dual complex, each cell

corresponds to a dual node, each face to a dual edge, each

edge to a dual face, and each vertex to a dual cell.

The incidence relationships of voxels (cycles) to faces

are the same as those of dual nodes to dual edges. Since

dual nodes and dual edges constitute a valid graph, their

incidence matrix is totally unimodular. The cycle-face inci-

dence matrix is therefore also totally unimodular.

If the primal complex occupies a bounded region, then

boundary conditions must be taken into account when con-

structing the dual. A consistent method of doing this is to

consider the outer region to be an additional cycle or face,

which becomes a dual node when the dual is constructed.

3. Linear fractional cost functions

Frenk and Schabile [5] give a complete account of linear

fractional cost functions in a general setting.

In the ratio cut formulation we consider the cost function

t(x) =
aT x

bT x
(1)

and the requirement is to minimise it over all x ∈ X , where

X is the set of feasible solutions.

Lawler [11, p. 94] describes a method of solving the

problem, which is elaborated upon by Meggiddo [13]. The

algorithm involves minimising

v(t,x) = (a− tb)T x (2)

over admissible x for a sequence of chosen values of t. The

method requires that b ≥ 0 and bT x 6= 0 for all x, and

an initial finite interval [tl, tu] bounding the minimum ratio

value must be known. The initial upper bound tu can be

provided by any feasible solution x: an obvious choice is

to use the solution that minimises aT x. If a ≥ 0 then the

lower bound can be taken as tl = 0.

Suppose that we select a value of t0 ∈ [tl, tu]. Let

x∗ = arg min
x

v(t0,x) (3)

with minimum attained value v(t0,x
∗). Three cases can

occur.

If v(t0,x
∗) = 0 then x∗ satisfies aT x∗/bT x∗ = t0.

However, since minx(a − t0b)T x = 0 it must be true that

aT x/bT x ≥ t0 for all x, so t0 is a lower bound on the

minimum ratio. Since x∗ attains this minimum it is a valid

solution, the minimum ratio is t0, and the algorithm can

terminate.

If v(t0,x
∗) < 0 then aT x∗/bT x∗ < t0. The value t0

is larger than the minimum ratio value, since x∗ yields a

ratio that is strictly smaller than t0. Thus aT x∗/bT x∗ is a

new upper bound on the ratio, and we can apply the update

tu ← aT x∗/bT x∗. Similarly, if v(t0,x
∗) > 0 then

aT x/bT x ≥ t0 + v(t0,x
∗)/bT x (4)

for all valid x. Thus t0 is smaller than the minimum ratio

value and the lower bound can be updated: tl ← t0.

The approach for obtaining a solution is to select a value

t0 ∈ (tl, tu), minimise Equation 3 over x ∈ X , and either

terminate with the required solution or update the bounds

and repeat with a value of t0 in the new interval. Since

the length of the interval [tl, tu] is strictly decreasing and

there are finitely many admissible solutions the algorithm

will terminate.

All that remains is to specify the rule for the selection

of t0 ∈ [tl, tu] at each iteration. In practice it makes little

difference: the upper bound value, the arithmetic mean, and

the geometric mean all work in the applications presented

and result in convergence after a small number of iterations.

The elements of the weight vector in the minimisation of

v(t0,x) in Equation 3 can have arbitrary sign. It is this fac-

tor that makes standard maximum flow algorithms inappro-

priate for the task, since flow capacities are required to be

nonnegative. It is the structure of the mesh and the duality

provided by differential geometry that makes the problem

tractable.



4. Problem formulation

Following Sullivan [15] and Grady [7, 6], the minimum

weight directed path problem with endpoint constraints can

be written as

min wT
y y subject to Ay = p, (5)

where y is an indicator vector for primal edges in a com-

plex. The signed node-edge incidence matrix A is also

the boundary operator for edges: for any valid path, indi-

cated by y with elements in {0, 1}, the quantity Ay has

one element per primal node and is only nonzero at the path

endpoints. A value of +1 or −1 indicates that the directed

path either originates from or terminates at the correspond-

ing node.

The vector p is used to enforce the desired endpoint con-

straints on the solution path. In most cases of interest it

will be a vector of all zeros, with a single +1 element at

the required start node of the path and a −1 element at the

end node. Since the constraint matrix A is the node-arc

incidence matrix of a directed graph it is totally unimodu-

lar, so for p as specified the solutions will be integral with

yi ∈ {0, 1} for each i, where yi is the ith element of y.

Furthermore, the method extends naturally to the problem

of finding a minimal surface in 3D if A is taken to be the

edge-face incidence matrix of a 3D complex, y is an indica-

tor vector for faces, and the constraint vector p is assigned

accordingly.

The problem we consider in this paper involves closed

directed cycles rather than paths. Since a closed cycle has

no endpoints, the appropriate constraint is Ay = 0 and

in the 2D case specifies that the indegree and outdegree of

directed edges in the solution must be equal for every node.

Algebraically, y must lie in the nullspace of A. However,

since this constraint is invariant to scaling of y, additional

restrictions are required to ensure that for each i we have

yi ∈ {0, 1} at the solution.

Let C be the edge-face incidence matrix of the primal

complex, and for clarity assume that the problem being ad-

dressed is segmentation in 2D. Define an indicator vector x

with one element per region, where xj = +1 denotes that

region j is in the interior of the object being semented, or

xj = 0 otherwise. Since C is the boundary operator for

regions, the oriented edges on the region boundary, repre-

sented by y, can be found using the relation y = Cx. Note

that the orthogonality between paths and cycles implies that

Ay = ACx = 0, as required. For any consistent region-

boundary pair (x,y), with xj ∈ {0, 1}, it must be true that

yi ∈ {0, 1}.

The overall optimisation problem addressed in this paper

can be written as

min
nT

x x + nT
y y

dT
x x + dT

y y
subject to y = Cx,

x1 ≤ x ≤ 1− x0, y1 ≤ y ≤ 1− y0. (6)

Here x1 is a zero-one indicator vector for region variables

forced to value 1 (interior) and x0 indicates regions forced

to zero (exterior). The indicators y1 and y0 are defined sim-

ilarly but for edges being forced to be either in or not in the

solution respectively. The elements of nx, ny , dx, and dy

can be positive or negative, but the denominator must be

positive for all feasible solutions.

Defining

wn = nx + CT ny and wd = dx + CT dy

the explicit dependence on y can be removed, yielding the

problem

min
wT

nx

wT
d x

subject to

x1 ≤ x ≤ 1− x0, y1 ≤ Cx ≤ 1− y0. (7)

This is in the form of Equation 1, where the inequality con-

straints describe the feasible set X . It is the fact that edge

costs can be transferred to region costs that makes the op-

timisation tractable. The constraints in Equation 7 can be

written as








−I

I

−C

C









x ≤









−x1

1− x0

−y1

1− y0









. (8)

The right hand side of this inequality is integral. Also, since

the matrix C is the transpose of the node-arc incidence ma-

trix of the dual complex it is totally unimodular. It is quite

simple to show that total unimodularity of a matrix is re-

tained over duplicating a row, appending a unit row, and

changing the sign of a row, so the matrix on the left of Equa-

tion 8 is totally unimodular [11]. The system therefore has

integral extrema, and there must be an optimal solution x

with xi ∈ {0, 1}.
Figure 2 shows two possible meshes in 2D. Each of them

supports the topology of a closed cycle, in the sense that

they can discretely approximate any directed cycle in terms

of position and orientation. (Note that not all meshes have

this property: if all the directed edges in a mesh of Figure 2

were pointing east and south, it would not be possible to

represent the directed portion of a cycle in the east-to-west

direction.) The orientation of the edges in terms of the out-

ward normal from the segmentation interior is indicated by

the red crossing arrows, which also indicate the edges in the

dual complex. Large red nodes correspond to cells or cycles

in the primal mesh, or nodes in the dual.



Figure 2. Possible oriented 2D meshes for use in minimum ratio

cut. Oriented boundaries are composed of directed edge elements

(black arrows), which are in one-to-one correspondence with dual

edges (red arrows).

The mesh construction limits the space of admissible so-

lutions by requiring that edges have the specified orienta-

tion. This was done to ease interpretation of the segmented

region boundary, and adds the condition that the dual graph

be bipartite. However, it is also possible to construct meshes

with pairs of double edges (forward and reverse) that do

not have this requirement [7]. In this case auxiliary or de-

generate cycles must be inserted ”between” the edge pairs,

and the corresponding auxiliary variables serve to reverse

the orientation if the surrounding surface topology supports

it. An arbitrary triangular or tetrahedral (in 3D) mesh can

therefore be used instead. In this case, however, it is possi-

ble for both a forward and a reverse edge to simultaneously

be in the solution, which requires some additional interpre-

tation.

5. Implementation

The optimisation problem presented in Equation 7 can

be formulated as a minimum s-t cut problem, and using

maxflow/mincut duality can be solved using a maximum

flow solver. Each element of x represents a cycle, and re-

lates to a node in the graph construction. Since xi ∈ {0, 1}
and a cut must separate the node from either the source

or the sink, the mapping from cuts to values of x is well

defined: if the cut separates node i from the source then

xi = 1, while xi = 0 if the cut separates node i from the

sink. It remains to specify the arcs in the graph and their

corresponding costs.

The x1 ≤ x ≤ 1 − x0 constraints on the elements of

x are simple. Considering the first case, x1 ≤ x, this con-

straint is only limiting where elements of x1 are unity. The

corresponding elements xi must then be 1, so the related

nodes must be in the sink set. This can be enforced using

infinite t-weights from these nodes to the sink node. Simi-

larly, the constraint x ≤ 1 − x0 is only limiting where x0

is equal to 1, forcing the corresponding elements of x to 0,

and can be enforced using arcs with infinite weight from the

source node.

Since C is a cycle matrix, it has one +1 and one −1
element per row. The constraints on y = Cx therefore

involve pairs of nodes. Consider Cx ≤ 1 − y0: since x is

a zero-one vector this constraint is only limiting where the

right hand side is zero, or where y0 is 1. The constraints

then take the form xi − xj ≤ 0, so the only disallowed

configuration is when xi = 1 and xj = 0. This can be

enforced by an arc with infinite capacity from node j to

node i.

The constraint y1 ≤ Cx is slightly more complicated.

Each row can be written as either 1 ≤ xi−xj or 0 ≤ xi−xj ,

depending on whether the corresponding element of y0 is 1
or 0. In the first case the only valid configuration is xi = 1
and xj = 0, which can be enforced with infinite weight arcs

from the source node to xj and from xj to the sink. In the

second case the only disallowed configuration is xi = 0 and

xj = 1, which can be eliminated using an infinite weight arc

from node i to j.

Disallowed configurations that violate the inequality

constraints can therefore be eliminated in the minimum cut

formulation using appropriate infinite arcs. The elements

of the cut value C(x) = wT x =
∑

wixi are represented

by finite arcs between nodes and the source and sink termi-

nals. Two cases occur. If wi is positive, the weight of the

cut should increase by wi if xi = 1. This is encoded by an

arc from the source to node i with weight wi ≥ 0. If wi is

negative the total weight should decrease by |wi| if xi = 1,

which can be achieved by reparameterisation: wi is added

to the overall cost and an arc of weight−wi ≥ 0 is included

between node i and the sink node [9].

A representation of the graph construction for the pla-

nar 2D case is shown in Figure 3. Red arrows in this graph

Figure 3. Graph construction for 2D segmentation. Dual arcs link-

ing to displayed (dual) nodes all have infinite weight. The dark

region is constrained to the interior via an infinite arc to the sink.

Light regions (including the exterior face region) are constrained

to the exterior via an infinite arc from the source. Other arcs be-

tween dual nodes (red) and terminal nodes are not shown.



all represent infinite weight arcs. The minimum cut can be

found by maximising the flow in the constructed graph. We

use the maxflow algorithm of [3], which is efficient for vi-

sion problems where interior arcs occur between spatially

adjacent nodes.

Figure 4 shows an example of interactive segmentation

using the ratio cut algorithm. The data is the gradient mag-

nitude g of an image of vegetables, mapped through an ex-

ponential e−g/σ2

(with a fairly arbitrary bandwidth param-

eter σ related to the size of image structures), and forms the

background in the displayed images. The cost function only

uses boundary weights (so nx = dx = 0 in Equation 6), al-

though including region weights would obviously improve

performance. The numerator in the ratio cost measures the

total weight of the cycles in the solution, where weights are

proportional to the grey level displayed, and interior and

exterior constraint seeds are shown in Figure 4(a). The de-

nominator measures the total Euclidean length of all the

boundaries in the solution. The ratio is therefore a geodesic

measurement of boundary cost per unit length, which has no

shrinking bias. While numerator costs are all positive in this

formulation it is not required. Figure 4(b) shows the result

for a standard minimum cut: the interior and exterior con-

straints are topologically consistent with the solution, but

the minimum cost objective favours short Euclidean paths

over low average cost paths. Figure 4(c) shows the ratio cut

solution, with the interior hatched: the desired solution is

obtained with a small amount of annotation, and the algo-

rithm terminated after 7 iterations.

The formulation does have some shortcomings. A min-

imum cost per unit length solution tends to make paths as

long as possible in areas that have low cost. This results in

spurious cycles visible in the top right of Figure 4(c) (at the

position of what was an onion in the original image): still

topologically consistent, they have ratio costs lower than

that of the desired cycle shown in green. It has not been de-

termined whether the cycles that enclose interior seeds still

have some useful optimality properties. To extract the de-

sired object from the segmentation we simply detect cycles

not connected to seed regions, and remove them from the

solution. For the results shown in Figure 4 the ratio cost

of the desired solution is 0.707 before removing the discon-

nected cycles and 0.83 after, while the minimum cut solu-

tion has ratio cost of 1.451. Interestingly, Vicente et al. [17]

consider connectivity constraints in a segmentation problem

and indicate that they are NP-hard to optimise over even in

the planar 2D case.

These spurious cycles do not occur without region con-

straints. Consider two cycles with costs c1 and c2 and

lengths l1 and l2. If cycle 1 is in the solution, then cycle 2

will enter if (c1 + c2)/(l1 + l2) ≤ c1/l1, or if c2/l2 ≤ c1/l1
(so the ratio cost of cycle 2 is less than that of cycle 1). By

identical reasoning cycle 1 will only be included in the so-

(a) Gradient image with markers, four interior (green) and three ex-

terior (red).

(b) Standard minimum cut: ratio=1.451.

(c) Minimum ratio cut: ratio=0.707 (post-processed=0.83).

Figure 4. Example of interactive image segmentation using stan-

dard minimum cut and minimum ratio cut.

lution with cycle 2 if c1/l1 ≤ c2/l2. The only way that

cycle 1 and cycle 2 can be in the solution simultaneously

is if they each have a ratio cost the same as their combined

ratio cost. However, if one of the cycles is constrained then

this symmetry is broken, and cycles not related to the main

cycle can appear.



The problem as described does not utilise the full power

of a minimum cut algorithm: interior arcs (i.e. those not

connected to the source or sink terminals) all have weight

∞, and are there purely to enforce consistency between

regions and boundaries. However, the solution as formu-

lated permits including finite weight arcs between nonadja-

cent cells, which could be used to penalise configurations

based on other information. In this sense the infinite weight

arcs represent a (submodular) structural constraint, and any

other submodular MRF can be superimposed on the graph

construction.

6. Application in 3D

Given a collection of candidate faces fi, i = 1, . . . , N
and J camera views, each view j allocates a cost cij for in-

cluding that face into the solution. We also assume that the

visibility of faces is known for each view: vij = 1 if face i
is visible in view j, zero otherwise, yielding a set of visibil-

ity values by v. We use an estimate of v obtained from an

initial visual hull reconstruction from the object silhouettes:

any face in the set of candidate faces is assumed to have the

same visibility as the nearest face on the visual hull.

A principled way of assigning costs cij is to consider

how a face projects into the images. Since we know from

which cameras a face is visible, we can backproject the pix-

els from the associated views and form an estimate of the

face appearance based on all the image data. A robust mea-

sure can be used to mitigate visibility errors. For now we

use a coarse measurement model, where only the projection

of the face centroid in the images is used for calculating

appearance. Thus the model assumes that the faces are uni-

formly coloured, the surface Lambertian, and the lighting

homogeneous. The squared difference between this aver-

age reconstructed colour over the equivalent region in the

image is used as a match measure.

An indicator variable xi is assigned to each patch in the

model. The total error of a configuration of x is the sum of

the squared errors for all the included visible faces over all

the views:

Ev(x) =
∑

j

∑

i

xivijcij . (9)

Minimising Ev(x) over x will not work for the same reason

that most geodesic formulations fail: the total squared error

will tend to be minimised for small reconstructed objects,

which project to a lower area in the images and therefore

contribute less total cost.

The ratio cost can be used to eliminate this problem. We

create a projected area functional

Av(x) =
∑

j

∑

i

xivijaij , (10)

where aij measures the area in image j covered by face fi.

The ratio functional

Rv(x) =
Ev(x)

Av(x)
(11)

therefore measures the total squared error per unit of pro-

jected area, which is equivalent to mean squared reprojec-

tion error. Note that this formulation also assumes nx =
dx = 0 in Equation 6, although ballooning could be incor-

porated via an appropriate choice of nonzero nx.

Figure 5 shows results when optimising this functional

for a calibrated turntable dataset of 8 images with the cam-

era slightly overhead1. The reference visibility estimate is

obtained by silhouette backprojection of careful segmenta-

tions. Interior and exterior constraint regions are specified

according to the distance of voxel centers from the visual

hull surface: active voxels are chosen to lie within a dis-

tance of 50 in the interior and 20 in the exterior, where the

height of the figurine in world units is approximately 400,

and at the resolution used yields about 1 million faces.

Figure 5(a) shows one of the views used in the recon-

struction. Figure 5(b) shows a reprojection of the standard

minimal surface solution onto the same viewpoint, using

the estimated face colours for the rendering. Green faces

are ones where the visual hull visibility estimate does not

provide any cameras that are visible in the forward direc-

tion. These have no projected costs (since they have no as-

sociated error), and are therefore inclined to appear in the

solution. No ballooning term is used, so the minimum cut

suffers from bias in shrinking the solution towards the in-

terior constraint surface. Figure 5(c) shows the ratio cut

solution: the bias is absent and the reconstruction is good,

apart from the errors caused by poor visibility estimates on

some faces. The optimisation takes about one second af-

ter all the required quantities are calculated, and 6 iterations

were needed to arrive at the minimum ratio solution.

The principle applied here can also be used for other

measures of match, which can instead be measured in units

of projected area rather than in absolute units. For exam-

ple, if image data is used to calculate a consistency measure

for a face, then this consistency can be scaled by the pro-

jected area and will therefore be properly normalised. Ori-

ented visibility or photometric models can be included as a

matter of course. An advantage of this explicit surface for-

mulation is that it allows errors to be referred to the image

domain, where maps of the reprojection error can be made

and model validity assessed.

7. Discussion and conclusion

A method has been presented for segmenting 2D images

based on a very general minimum ratio cost function. Con-

straints on the solution can be easily and conveniently im-

posed, and an efficient algorithm exists for performing the

1http://www-cvr.ai.uiuc.edu/ponce grp/data/mview.



(a) One of 8 images used in reconstruction. (b) Minimum surface (no ballooning): ra-

tio=647.4.

(c) Ratio surface: ratio=258.6.

Figure 5. Three-dimensional reconstruction using minimum cut and ratio cut.

optimisation. It works because negative costs on boundary

elements can be referred to regions via the region-boundary

operator, and region costs can take arbitrary sign without

affecting the tractability of the problem.

The method uses the principles of differential geome-

try, and the formulation extends naturally to three (or more)

dimensions. It is shown that 3D reconstruction without a

shrinking bias is possible, and the solution can be obtained

efficiently.

The formulation does have some complications. When

region constrains are imposed, the solution can exhibit spu-

rious foreground regions which make it difficult to interpret.

These are a consequence of the cost function rather than of

the algorithm, and it remains to be seen whether there is a

systematic way of eliminating them.

References

[1] G. Borradaile. Exploiting Planarity for Network Flow and

Connectivity Problems. PhD thesis, Brown University, 2007.

2

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in N-D images.

In ICCV, volume I, pages 105–112, 2001. 1

[3] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

vision. PAMI, 26(9):1124–1137, September 2004. 6

[4] I. J. Cox, S. B. Rao, and Y. Zhong. ”Ratio regions”: A tech-

nique for image segmentation. In ICPR, volume 2, pages

557–564, Vienna, Austria, 1996. 1

[5] J. B. G. Frenk and S. Schaible. Fractional programming. In
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