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Abstract—We demonstrate an algorithm for estimating the 6
degree-of-freedom pose of a textureless object such as a power
pylon. The method is designed to be part of the inspection
process for a transmission line. The approach involves three
steps, namely predicting the vertices of the pylon with a neural
network, establishing the correspondence between vertices with
hashing techniques, and incrementally tracking the movement of
the camera. We built a pylon model for the experiments and used
it to generate our dataset.

Index Terms—3D Object detection, Pose estimation, Transmis-
sion line inspection, Tracking

I. INTRODUCTION

The transmission line is a vital part of our lives as it is used
to supply electricity. Therefore, we need to ensure it is always
maintained and that each component is functioning properly.
One part of the inspection process involves identifying indi-
vidual power pylons and making sure that none of the parts
are missing or malfunctioning. Foot patrols and helicopters are
often used to do the inspection. Robots are starting to be used
for inspection, although they are mostly remotely controlled.

The first task needed for automating the inspection process
is to accurately localise the objects of interest. A lot of the
literature on visual inspection focuses on object detection with
the output as a bounding box, such as pylon detection [1]–
[3] and insulator detection [4], [5]. Localisation or pose
estimation involves finding the six degree of freedom position
and orientation of an object relative to the camera. The pylon
is the most prominent component of the transmission line and
localising it provides a context for locating other components
that need to be inspected.

The pylon is made up of bars or struts intersecting at
points or vertices. It belongs to the category of textureless
”wiry objects” for which most stereo reconstruction or tracking
methods fail — an image patch around a feature point relates
to the background and not the object itself, so pixel descriptors
cannot be used for matching. SLAM-based methods also fail
in this situation.

To develop the ideas presented in this work we built a model
pylon for use in the experiments. The dataset of the model
pylon was generated from images taken at various angles and
against different backgrounds. Figure 1 shows an example

Fig. 1: An example of result of the algorithm with the
estimated 3D model of the pylon projected onto the image.
The vertex prediction of the CNN is shown in red.

image with some results of the proposed algorithms indicated.
The model was built from plan by hand using architectural
model material. Insofar as the building is accurate the 3D
locations of vertices and struts in the object frame are known.

The work addresses the localisation problem of estimating
the 6 degree-of-freedom pose of a camera relative to the pylon.978-1-7281-4162-6/20/$31.00 ©2020 IEEE



To achieve this we use a convolutional neural network with
a deep residual network (Resnet) archictecture as a keypoint
detector for a vertex, and geometric hashing to establish
correspondence between vertices. Once an initial pose estimate
is available an extended Kalman filter is proposed for tracking
incremental changes in the pose of the camera.

The structure of this paper is as follows. In section II we talk
about related work on pose estimation. The means of acquiring
images plays a vital role in the technique. Section III describes
the algorithm framework. This includes object representation
and image features that are easily extracted. We discuss the
search strategy and how it can register the 3D model onto the
image. Incrementally tracking the movement of the camera
is also described. In section IV we provide details of the
implementation and the results obtained in the research. We
summarise our research findings in section V.

II. LITERATURE REVIEW

Pose estimation is a classic computer vision problem and
different techniques have been used to solve the problem.
Feature-based techniques such as SIFT [6], SURF [7] and
ORB [8] work well with natural images that are well textured.
These methods involve extracting keypoint features from the
images. Using a descriptor method, they recognise similar
characteristics across scale, orientation and location variations
in order to match between images.

RGB-D cameras provide depth information and have been
used to solve pose estimation for weakly textured objects.
A template matching technique was used by [9] for the 3D
pose estimation problem, where they used the color and depth
information to establish a match with a template from different
views of the object. In [10] a generalized Hough-like voting
technique for pose estimation is used, where they extracted the
features using oriented point pair features. The use of random
forests was proposed by [11]. The random forest was used to
predict 3D object coordinates and instance probabilities of the
object. The output of the network was used in a cost function,
and a RANSAC based method provided the pose estimate.

Work that is closely related to our research is [12]. They
consider pose estimation and tracking for augmented reality
(AR). A CNN is used for the part-based detection. Each part
is a discriminative region of the object and represents a 2D
reprojection of the 3D points. Their 3D points do not represent
any special feature but are arbitrary points used to provide
information for achieving a 2D-3D projection. The network
output is invariant to the image location on the parts and
depends on the image appearance. The network detects several
candidates for the parts and the most likely candidates given
the prior on the pose, represented as a mixture of Gaussians,
are selected. The prior is used to define the normal range of
the camera. The pose computed for previous frames is incor-
porated into the system for temporal consistency. Optimization
using the Gauss-Newton algorithm is done over the prior and
the parts to solve for the pose estimates. For the best pose
estimate they evaluate the pose under different cues, and train
a linear regressor to predict the penalty for the different cues.

An extended Kalman filter smoothes out the trajectory and
reduces jitter.

III. ALGORITHM FRAMEWORK

We need to obtain the pose estimate of the pylon and also
track the movement of camera relative to the pylon. The pylon
is a repetitive structure and is not well-textured, making it a
difficult problem. To handle the problem we need a way to
represent the object. The vertex is a unique point on the pylon
and a collection of vertices serves as the representation of the
object. We register the 3D model of the pylon onto the image,
allowing us to obtain the 6 degree of freedom (DOF) pose
estimate of the pylon relative to the camera. Then we track
the movement of the camera around the pylon.

In the sections below we discuss vertex detection using a
convolutional neural network, registration of a view of the
3D model of the pylon using geometric hashing, and tracking
the movement of the camera using an extended Kalman filter
(EKF).

A. Keypoint based detection of a vertex

The use of convolutional neural networks has become very
common in a lot of computer vision tasks. With the concept
of transfer learning, a network architecture can be used for
different tasks. There are different CNN models that have
been pretrained on large datasets like ImageNet. The network
architecture we use was borrowed from the deepercut [13]
paper on human pose estimation and the deeplabcut [14] paper
for hand annotation.

We use the ResNet [15] pretrained architecture for this
work. The ResNet configuration was designed for deep neural
networks. It was observed that as the depth of the neu-
ral network increases the feature map output degrades, and
ResNet was one method developed to address this issue. Most
networks are made for classification but can be fine tuned
for other tasks such as object detection, segmentation and
keypoint detection. ResNet is made up of five different blocks
comprising convolutional filters, pooling filters and non-linear
filters in each block, and a final layer of average pooling and
classification.

For the detection of the vertex, which is keypoint detection,
we need to modify the ResNet to fit our task. The final layer of
the average pooling and the classifier is removed. The removal
of the final layer means the feature map has an output stride
of 32 pixels. It tends to be coarse for localization. Therefore,
the 3×3 convolutional filter in the fifth block is replaced by a
dilated convolutional filter using the hole algorithm: the dilated
convolutional filter puts zeroes (holes) in between the kernel
elements. Finally, the output is passed through a fractional
convolution filter of stride 2 pixels to upsample the feature
map to an output stride of 8 pixels.

1) Training: There are different ResNets with differing
depths, and for this experiment we used the ResNet 50.

Training is done with a sigmoid activation and a cross-
entropy loss function. Stochastic gradient descent is used as
the optimizer. The dataset is divided into a ratio of 75% for



the training and 25% for the testing stage. To train the model
we need to create a heat map. The heat map has the size of the
resized image and a depth equivalent to the number of vertices.
Each of the channel of the heatmap where a particular vertex
is located is labeled as 1 otherwise the rest of is labeled as 0.

The pylon is symmetric in that opposite faces are identical,
and both can be seen simultaneously from each side. In the
models for the training we mostly focused on the front face.

For the training of the CNN we collected images from
different positions and orientations. We used varying back-
grounds for the data collected to ensure variety in the images.
We labeled each visible vertex point in each image uniquely,
with a maximum of 77 vertices for each view of the pylon.

The network used 1.03M iterations for the training, which is
equivalent to 3433 epochs. The learning rate starts from 0.001
for the first 10k iterations, then uses 0.002 for the next 420k,
0.0002 for the next 300k, and 0.0001 for the next 300k.

2) Results: We used 300 images of the pylon for the task
of training and testing the vertex detection network.

A maximum pixel location in each channel of the predicted
heatmap is considered as the vertex output. This provides
the vertices which are keypoints and used for the geometric
hashing and with the Kalman Filter.

The end result was a training error of 22.81 pixels and an
error in the testing stage of 42.48 pixels.

Images Image 1 Image 2 Image 3 Image 4 Image 5
Number of points 32 53 32 32 32
Correct prediction 30 48 15 28 30

TABLE I: Table for the correct prediction of the vertex.

Table I provides information on the effectiveness of the
CNN for predicting the vertex positions for certain selected
images. The ”Number of points” is the total number of labeled
points that we hope to find. In many cases these points are on
the side of the pylon facing the camera. The figures quoted
under ”Correct prediction” contain counts of the number of
times the network correctly identifies the vertices.

The prediction is good, as can be seen in the table and
in Figure 2, which shows both labelled vertices and their
predictions given by the network.

B. 3D pose detection
Geometric hashing [16] is a model-based technique that

we use for the pose detection problem. It is implemented
in two stages, the training and the recognition stage. The
training stage involves representing and storing the model and
its features in a hash table. The index of the hash table is the
weighted value of a point in the reference frame and the model,
and a subset of the features are its accompanying information
in the hash table. The subset of the features is an ordered pair
called the basis set and the number of features to form a basis
set is determined using the transformation type.

The basis set is used to transform a point to a new reference
frame weighted value. We see in Equation (1) the relationship
between the basis set, the basis set center pc, and a point pi:

pi − pc = apx + bpy. (1)

Fig. 2: An image of the the CNN hand annotated label (+)
and the predicted output of the network (•).

We solve for the index (a, b) by rearranging (1) to give the
formulation as

Ax = y (2)

with the basis set matrix

A =

[
px1 py1
px2 py2

]
, y =

[
(pi1 − pc1)
(pi2 − pc2)

]
and x =

[
a
b

]
.

(3)
The sides of the pylon are planar, so any two views

of a side are linked by a planar homography or projective
transformation. In our work we use an affine transformation,
which should be approximately valid as long as the camera is
quite far from the pylon. We require three points to determine
the affine transformation. These points can be the vertices of
the triangle (p0, p1, p2) to represent the basis set, and the center
of the basis set is pc = (p0 + p1 + p2)/3.

The basis set matrix columns are the difference between
the two points against one of the points px = p1 − p0 and
py = p2 − p0.

To form the hash table we pick any three points in Figure 3
as the basis set, and use equation (1) to transform the other



Fig. 3: Training image.

Fig. 4: Recognition image.

points to a new reference frame (pi −→ (a, b)). The new
position of the points is weighted and quantized to represent
the index (as, bs) for the hash table. This is done for every
possible combination of three non-collinear points.

The recognition stage involves having a scene image and
matching it to a model in the training stage. We use the basis
set to transform all the other features. A voting technique
attempts to align the scene features with the training features.
If this happens then the basis set with the highest vote should
be the right basis set. In Figure 4 we see points that have
undergone some transformation. We need to pick three points
just like in the training stage to serve as the basis set.

After selecting a basis set we transform the other points
using Equation (1) to obtain the index and subsequently the
weighted and quantized index (as, bs). We search for the

presence of the index in the hash table and append a value of
one if the index is found. We try this for every generated index
by the remaining points in the scene image. The vote count
is held by an accumulator. The accumulator is divided into
various bins using a particular hash bin size. Each weighed
and quantized index retrieves the information that is stored
in its location in the hash table and a score is added to the
retrieved information (model and basis set) found. The model
and basis set with the highest values are considered as the
estimate.

We experimented with algorithm and obtained the results
shown in Figure 5. The results of the experiments are the
recognition accuracy of the algorithm for different hash bin
sizes. The plot shows when the right basis set is in either the
top 10 or the top 20 of hypotheses generated by the voting.

Fig. 5: The recognition accuracy.

We need a way to verify and refine the result. The refine-
ment is an iterative process which uses a kd-tree to find the
distances between the vertices and give each a neighbour. Then
we solve the homography problem with RANSAC to find the
optimal solution. We keep doing this until we find the error
to within a certain tolerance level.

C. Viewpoint pose tracking

The movement of the camera relative to the pylon is tracked
using an extended Kalman filter. For modelling the trajectory
dynamics of the camera we use a random walk in the pose
space.

1) State and Observation model: The random walk is based
on the assumption that at each time the value of a variable
is a random jump away from its previous value. The jumps
are independently and identically distributed: Xn+1 = Xn +
Wn. Thus future values of variables depend on the previous
observed values and noise.

We use the random walk model to track the movement of
the camera. For this model the covariance grows linearly with
time, which in many problems produces large dispersion. Also,
there is no well-defined velocity for the object.



The pose is given as the components of the translation and
rotation relative to the object to the camera. The pose has six
degrees of freedom that fully quantify the position the camera.
The translation can be represented as t = [tx, ty, tz] with a
state transition of

tn+1 = tn + vn, (4)

where vn is a normal random variable with density N (0, σ2I).
The representation of rotation is difficult. The Euler angle

and axis-angle representations tend to be easy but have a
problem with singularities because of gimbal lock. To mitigate
such issues we use a quaternion representation. The quaternion
needs to meet the nonlinear constraint q20+q2x+q2y+q2z = 1. At
each step there is normalization to ensure the constraint holds.
We have a base unit quaternion q0 representing the rotation,
and a perturbation represented by qp. At each incremental step
we update the base quaternion to the estimated orientation and
reset the axis-angle perturbation to zero. The base and pertur-
bation quaternions combine to provide the full quaternion pose
q = q0qp. The transition model of the rotation is represented
as

sn+1 = sn + ϵn, (5)

where s represents the perturbation and ϵn ∼ N (0, σ2I). The
combined state model for the full 6 degree-of-freedom pose is

xn =

(
tn
sn

)
. (6)

The object is fixed while the camera is moving. Also, the 3D
coordinates of the object are known and fixed. To obtain the
camera dynamics we combine the calibrated intrinsic camera
parameters K and the extrinsic parameters (R and t):

P = K[R|t].

The observation model is given as

zn = h(xn) + en. (7)

The function h(xn) is nonlinear and combines the 3D
coordinates and the camera projection.

h(xn) = PX. (8)

2) Data association: At each iteration of the tracker we
have to ensure the vertices are matched properly. Therefore,
we opt to use RANSAC to establish the correspondence. Using
RANSAC also helps with handling of outliers.

3) Refinement: With the inliers obtained from RANSAC,
sometimes the tracker falls into a local minimum which causes
some drift. This drift eventually makes the tracker fail. We
use an iterative technique for the refinement. The whole set
of vertices is used for the refinement to ensure a better
generalisation.

IV. IMPLEMENTATION AND RESULTS

We discuss the experiments performed and the results
obtained for the algorithm. Geometric hashing serves as the
initialization stage for the algorithm. Subsequently geometric
hashing is only required if the tracking fails and new initial
estimate of the pose is required.

As mentioned we created a model pylon for use in the
experiments.

We initialized the pose estimate using geometric hashing,
and then updated it via tracking using a Kalman filter. In both
cases we used vertices from the neural network as the feature
points.

For the geometric hashing we picked images from different
views, and hand annotated them to serve as the models stored
in the training stage. Each hand annotated vertex was provided
with its corresponding 3D point as shown in Figure 6, also
manually specified.

Fig. 6: Example of image used for training phase the geometric
stage with some of the 3D coordinates.



Fig. 7: The translation and orientation of the camera.

We used an affine transformation for the generation of the
basis set and selected only non-collinear points.

Probalistic geometric hashing [17] takes 204s per frame,
which is too slow. Therefore, we used the non-probabilistic
voting technique because it is fast and relevant for a real-time
system. The weight of the hash bin is given as 0.5 with a
quantization of 0.25.

We tested the effectiveness of the algorithm with manual
annotation of the four corners of the rectangular stand of the
model pylon used to estimate the ground truth pose. Figure 7
and 8 provides information on the trajectory of the camera
as it moves and takes images of the pylon. The Figure shows
that the proposed methods succeed and are quite accurate, with
mean camera position errors of 6.17mm, 0.89mm, 8.38mm for
the x, y, and z directions, and mean errors of 1.04◦, 2.53◦,
and 6.76◦ for the roll, pitch and yaw rotations.

Some snapshots of the results of the registration of the
pylon is shown is Figure 9. We also provide video of the
registration of the 3D model to the pylon image using the
estimated pose of the camera obtained in each iteration at
https://youtu.be/vqVtfkYOi8A.

The view of the pylon shows different vertices at any
time. Some of these vertices are false and are due to the
apparent crossings of the bars in the projected image. This
makes the refinement and outlier rejection necessary. Even
with fluctuating number of vertices the tracker is robust.

The effectiveness of the algorithm depends on how well
the geometric hashing is able to detect the object either at
the initialization or during relocalization of the detection.
Therefore we attempted to see the rate of successful detection

Fig. 8: The translation component of the camera pose in the x,y
and z axis fused together when tracking. The blue represents
the groundtruth and the green represents the estimate of the
camera position.

for the geometric hashing over the full 100 frames, and
obtained a result of 59%. The threshold of the root mean
square error is set to 10 pixels. We select the first 50 basis
set for the trial. During each trial, we generate 20 hypothesis
candidates and pass them through the verification stage. In
the verification stage, only candidates with a value less than
the threshold and with a vote count of more than 25 in the
accumulator are selected as accurate detections. An issue with
geometric hashing is that it fails when the neural network
falsely predicts a vertex and the vertex becomes part of the
basis set.

We use a 11GB GTX 1080i GPU for the training of the
neural network and takes 0.153s to produce the networkoutput.
It takes 2.12s for pose estimation of the object using geometric
hashing, and the time for each iteration of the Kalman filter
is 0.204s.

V. CONCLUSION

We propose a method that can extract distinct features on
a weakly textured wiry object such as a power pylon using a
neural network, propose a method for pose estimation using
geometric hashing, and formulate a Kalman filter tracker for
subsequent incremental pose estimation. We show that it is
possible to obtain a pose estimate of the camera and track the
movement of the camera relative to the pylon. The algorithm
can be used as part of an inspection system needed for the
autonomous inspection of power line infrastructure.
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