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Abstract

This paper presents some ‘work in progress’ towards
a multi-camera person tracking solution. The tracking
system aims to combine observations obtained from
one or more cameras and a simple motion model to
optimally estimate the location of a person in the mon-
itored scene using an Extended Kalman Filter. Obser-
vations are made in image space but the tracking takes
place in world coordinates using the cameras’ calibra-
tion information. The novelty of this implementation
lies in the way the observations used by the Kalman
filter are obtained. The observation in image space is
done by finding the best match with a RGB-height his-
togram assuming an elliptical shape for the person. At
this stage, once the system is initialised, a person can
be tracked using two cameras at 4-5 frames per second
in a Matlab implementation that is robust to prolonged
partial occlusions in either or both views at the same
time. Although further testing is required this imple-
mentation looks promising.
Keywords: Person tracking, Kalman filter

1 Introduction

Robust person tracking in real-time presents quite a
difficult task that, if solved would find applications in
surveillance and monitoring. There are different ap-
proaches to solving the problem, each one, making
different assumptions about the tracked objects, the
scenes and whether cameras are static or not. There
is no real elegant solution at this point that has the
speed and robustness that surveillance system requires.
However tackling the tracking problem as a probabilis-
tic estimation problem seems to be, judging from the
literature, the most promising. Particle filters imple-
mentations such as ones by [2] and [6] and Kalman fil-

ter implementations such as ones by [1] and [10] seem
to be the ones with most success.

In this implementation the tracker/estimator is an
Extended Kalman Filter. The Kalman Filter is of-
ten referred to as an optimal estimator [5]. It is op-
timal in the sense that is lends itself very well to the
problem of combining multiple observations and a dy-
namic model. The Extended Kalman Filter enables es-
timations when there are non-linearities in the way the
observations and the system dynamics relate. This is
done at relatively low computational cost compared
with the particle filter, where more samples are re-
quired to be evaluated.

The other main divide in the different approaches
is whether the tracking takes place in the 2-D image
space (e.g. [1]) or in a 3-D world-view (e.g.[10]).
The second approach is suitable when the cameras are
static and calibration information is available. Since
this is the case for the tracking problem tackled here,
we can track in 3-D. This offers several advantages,
namely:

(i) Motion models with various constraints are eas-
ier to construct in world coordinates;

(ii) Occlusions are easier to resolve;

(iii) The definition of a common coordinate system in
the case of multi-camera tracking configurations
is made simpler.

A person being tracked is assumed to be a 3D ellipsoid
of known size with his/her feet on the ground plane.
The ellipsoid is chosen because it is always projected
onto image space as an ellipse, making things simpler.

Observations in the image plane of each of the cam-
eras are taken by comparing ellipse shaped image sam-
ples with available models for each of the tracked sub-
jects. The two most common approaches are: colour
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histograms (used by [1] and [2]) and appearance mod-
els (used by [10] and [3]). The first approach is scale
and orientation invariant, but loses all spatial informa-
tion. The second makes use of spatial information but
adjusting for scale and orientation changes over time
is difficult.

The approach used in this implementation is a sort
of compromise between the two. We bin colour infor-
mation in a (10×10×10) RGB space but we also add
a n bin discretised height (along the vertical axis of
the ellipsoid) dimension. We hence make use of some
of the spatial information, while retaining the ‘nice’
properties of a histogram.

Initialisation is a separate issue from the tracking
and will not be dealt with in this paper. Hence the
tracker presented here assumes that the initial 3-D lo-
cation of the tracked subject is reasonably close to the
truth and that a reasonably good colour-height model
is available.

2 The Tracking method

2.1 Method overview

Once initialised, the tracking process runs as follows,
each time a new image of the scene is received:

1. Some basic segmentation: A background model
(image) is ‘subtracted’ from the new image to
identify foreground regions.

2. Prediction in world view: The location of the
tracked person is predicted using the previous es-
timate of his/her location.

3. Projection to image space: The 3-D ellipsoidal
space occupied by the tracked person is projected
to the corresponding ellipse in image space.

4. Observations in image space: Using this predic-
tion as a starting point, a search of the best match
of the elliptical-template-shaped image samples
to an RGB-height histogram model is performed.

5. Update: The best match and the associated qual-
ity of the match, together with the predicted 3-
D location is used to compute the Kalman gain.
This Kalman gain weighs the contribution of the
measurement to make a new estimate of the per-
son’s location.

2.2 Segmentation

In this step a very basic background subtraction us-
ing an adaptive background model is performed. The
difference is thresholded and foreground regions are
labelled as shown in figure 1. Since the tracker does
not rely only on this segmentation, it is not crucial that
good segmentation is achieved but the information ob-
tained here improves the measurement substantially.

FIGURE 1: Thresholded background subtraction. The
foreground pixels are highlighted.

2.3 Prediction in world-view

For each person being tracked, the system uses a
single world-view model. This model describes the
x and y position and velocity (a 4-D state vector:
x = (x, y, ẋ, ẏ)T ), together with a measure of the
uncertainty in this vector (a 4 × 4 covariance matrix:
N = diag(σx, σy, σẋ, σẏ)) in the chosen 3-D world
coordinate space. Each time a new frame is received
from one of the cameras, x follows a transitional
relationship of the form:

x(t + Δt) = A(Δt) · x(t) + |Δt|v(t) (1)

And the observations y:

y(t) = b(x(t)) + e(t) (2)

where

A =

⎛
⎜⎜⎝

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,
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b is the ground-plane to image-plane transformation
function, Δt is the time that has elapsed since the
model was last updated (when the previous frame,
from the same or a different camera, was received by
the system), v(t) and e(t) are noise sequences with
zero mean and covariance matrix:

E
(

v(t)
e(t)

)(
v(t) e(t)

)
=
(
N(t) 0

0 W(t)

)

This formulation allows asynchronous predictions to
be made and increases the uncertainty of the predic-
tion with Δt. Hence, given an initial or a previous
estimate of the state vector x̂(t − Δt|t − Δt) and the
associated uncertainty P(t−Δt|t−Δt), the prediction
and associated uncertainty is given by

x̂(t|t − Δt) = A(Δt) · x̂(t − Δt|t − Δt) (3)

P(t|t−Δt) = A(Δt)P(t−Δt|t−Δt)AT (Δt)+|Δt|N(t)
(4)

2.4 Projection to image space

2.4.1 Quadrics and conics

An ellipsoid is a particular configuration of a quadric.
A quadric is represented in homogeneous coordinates
by a symmetric 4 × 4 matrix Q such that points in
space that are inside the ellipsoid will satisfy:

XTQX > 0 (5)

Where X = (x, y, z, 1)T — the 3-D homogeneous co-
ordinates of points in world view.
It is shown in [8] that for a normalised projective pro-
jective camera Pn =

(
I 0

)
, the profile of a quadric

Qn =
(

A b
bT c

)
is a conic C described by:

C = cA − bbT (6)

Hence the points in the image, Y that satisfy (7) will
lie inside the projected ellipse.

YTCY > 0 (7)

where Y = (j, i, 1) - homogeneous pixel coordinates
of points in the image space.

To obtain the image Qn of a quadric Qw in an ar-
bitrary projective camera P = K

(
R t

)
, one has to

first compute H such that PH =
(
I 0

)
, where R

and t define rotation and translation transformations,

and K, sometimes described as the intrinsic matrix,
defines the scaling from metric dimensions to pixel di-
mensions.

Once H is computed, Qn is calculated as follows:

Qn = HTQwH (8)

FIGURE 2: A quadric Q with its projection C on the image
plane

2.4.2 From a 3-D position to an ellipse in image
space

This process is broken down in the following steps:

1. Given the predicted position x̂(t|t − Δt) and the
height of the person L, generate Qw(t|t−Δt) that
will describe the vertical ellipsoid with centre at
(x̂(t|t − Δt), ŷ(t|t − Δt), L/2) and dimensions
(L/4, L/4, L).

2. Calculate H and Qn using P and Qw(t|t − Δt).

3. Calculate the corresponding conic C(t|t − Δt)
using (6).

4. Find the points (ju, iu) in the image plane that
will be inside the ellipse by applying (7).

5. These are ideal, distortion-free pixel image coor-
dinates. The real, distorted pixel image coordi-
nates (jd, id) are calculated as follows:

ju = jd + jd(κ1j
2
d + κ1i

2
d) (9)

iu = id + id(κ1j
2
d + κ1i

2
d) (10)

where κ1 is the first order distortion coefficient of
the lens.
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2.5 Observations in image space

The predicted image location obtained in the previous
step together with the foreground regions identified in
step 1 are not sufficient for robust tracking. To dis-
tinguish between the different foreground objects we
make use of the colour information contained in the
image together with some colour reference for each of
the tracked subjects.

2.5.1 Template matching

As mentioned in the introduction, we bin colour in-
formation in a (10 × 10 × 10 × n) RGB-height his-
togram. In the binning process only foreground pixels
within the ellipse shaped samples are counted. Figure
3 shows an example of such a sample and the corre-
sponding RGB-height histogram. The colours shown
are the calculated mean RGB values for each of the n
segments. A value n = 6 has been found to be satis-
factory for a number of tracking sequences.

FIGURE 3: Ellipse shaped image sample and correspond-
ing RGB-height histogram

The similarity measure between the model distri-
bution p(u) (generated on initialisation and updated
throughout the tracking process) and an image sam-
ple distribution q(u) uses the popular Bhattacharyya
coefficient ([1] and [6])

ρ[p, q] =
∫ √

p(u)q(u)du (11)

The larger ρ is, the better the match. The next step
is to find the best match ρpeak, and its corresponding
position y(t) = (jpeak, ipeak).

2.5.2 Finding the best match

Since the computation involved in the histogram repre-
sentation and matching is the bottleneck of the whole
tracking process, one would like to keep the number of
image samples required to find y as low as possible.

FIGURE 4: Surface plot of ρ and samples points

Mean-shift type searches [1], which usually don’t
require many iterations, cannot be implemented using
the chosen model representation because of the spatial
information it contains. So the 3 approaches that were
considered were:

(i) Multi-scale exhaustive search within Pp(t|t −
Δt)

(ii) n random samples from the normal distribution
N(I,Pp(t|t − Δt))

(iii) The Simplex search method [4], implemented by
the Matlab fminsearch function with limited iter-
ations.

Good results were obtained using approach (iii), with a
20 iterations limit and the projected predicted location
picked as the starting point. But however, in more clut-
tered scenes, approach (ii) with as few as 20 samples
was found to be robust to mixing up people. Approach
(i) proved to be the most robust but required a lot more
than 20 samples.

Figure 4 shows the template matching output ρ(j, i)
in the neighbourhood of the image of a tracked subject.
Also shown are the samples that were taken from the
distribution (x̂p(t|t − Δt),Pp(t|t − Δt)).

2.5.3 Calculating the projected prediction uncer-
tainty Pp(t|t − Δt)

The prediction uncertainty P , is projected to image
space Pp(t|t − Δt) by the Jacobian of the image to
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world transformation:

Pp(t|t−Δt) =

(
∂j
∂x

∂j
∂y

∂i
∂x

∂i
∂y

)
×P(t|t−Δt)×

(
∂j
∂x

∂j
∂y

∂i
∂x

∂i
∂y

)T

(12)
The uncertainty associated with the measurement y(t)
is scaled by the quality of the match found by fmin-
search:

W (t) =
1

ρ(y(t))
×
(

σj 0
0 σi

)
(13)

where a value of 5 pixels for σj and σi seems to be
good for this particular configuration.

2.6 Update

The update step can be summarised as follows:
Given an observation y(t), the predicted state
x̂(t|t − Δt), and their respective uncertainties W(t)
and P(t|t − Δt), make an optimal estimate of the
location x̂(t|t) and its associated uncertainty P(t|t).
This is done using the Kalman filter formulation as
treated in [9] and [7]:

x̂(t|t) = x̂(t|t−Δt)+K(t)[y(t)− b(t, x̂(t|t−Δt))]
(14)

P(t|t) = P(t|t−Δt)−K(t)B(t)P(t|t−Δt), (15)

where x̂(t|t−Δt) and P(t|t−Δt) were calculated in
the prediction step using (3) and (4).

Since b(t,x) is non-linear, B(t) is calculated by lo-
cally linearising b at x = x̂(t|t − Δt):

B(t) =
∂b(t,x)

∂x

∣∣∣∣
x=x̂(t|t−Δt)

(16)

This gives:

B(t) =

(
∂j
∂x

∂j
∂y 0 0

∂i
∂x

∂i
∂y 0 0

)
(17)

The Kalman gain is calculated as follows:

K(t) = P(t|t−Δt)BT (t)·[B(t)P(t|t−Δt)BT (t)+W(t)]−1

(18)
Figure 5(a) shows a close-up view, as seen from the
top, of the predicted person position, the two observa-
tions, and the optimal estimate together with their re-
spective uncertainties. Figure 5(b) and 5(c) show the
2 frames from which the observations were made and
the projected ellipse at the estimated location.

(a)

(b) Camera 1

(c) Camera 2

FIGURE 5: Views from camera 1 and 2 at that particular
instant with estimated position of ellipsoid projected back
onto the image
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3 Some results

Figure 6 shows the result of the tracking of one per-
son inside a room using two cameras. The ground
truth (done by hand) is shown as the dark line and the
estimates are shown by the triangles. This particular
sequence has an instance of complete occlusion from
camera 1 and partial occlusion from camera 2. Once
initialised, the tracker currently tracks a single person,
from one view, at roughly 4-5 frames a second. This
result is achieved on a Pentium 2.4 GHz, with image
size of 384 × 288 with ellipses containing 1000-4000
pixels (roughly 1-4% of the total image area).

FIGURE 6: Tracking results for 115 frames

4 Conclusions

In this paper a 3D tracker making use of multiple
observations was presented. The use of an Extended
Kalman filter as the optimal estimator/tracker was
demonstrated. A novel 4 dimensional RGB-height
(along projected ellipse’s longer axis) histogram for
matching ellipsoidal-shaped templates was tested
and seems to be a good compromise between colour
histograms and appearance models offering the
advantages of each approach for representing the
subject being tracked. Further testing of the algorithm
still needs to be performed. There is a lot of scope to
improve on the current processing speed.
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