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Abstract— We give a tutorial exposition of turbo
codes and the associated algorithms. Included are a
simple derivation for the performance of turbo codes,
and a straightforward presentation of the iterative de-
coding algorithm. The derivations of both the per-
formance estimate and the modified BCJR decoding
algorithm are novel. The treatment is intended to be
a launching point for further study in the field and,
significantly, to provide sufficient information for the
design of computer simulations.

I. INTRODUCTION

Turbo codes, first presented to the coding community in
1993 [1], represent the most important breakthrough in
coding since Ungerboeck introduced trellis codes in 1982
[2]. Whereas Ungerboeck’s work eventually led to coded
modulation schemes capable of operation near capacity
on bandlimited channels [3], the original turbo codes of-
fer near-capacity performance for deep space and satellite
channels. The invention of turbo codes involved reviv-
ing some dormant concepts and algorithms, and combining
them with some clever new ideas. Because the principles
surrounding turbo codes are both uncommon and novel, it
has been difficult for the initiate to enter into the study of
these codes. Complicating matters further is the fact that
there exist now numerous papers on the topic so that there
is no clear place to begin study of these codes.

In this paper, we hope to address this problem by in-
cluding in one paper an introduction to the study of turbo
codes. We give a detailed description of the encoder and
present a simple derivation of its performance in additive
white Gaussian noise (AWGN). Particularly difficult for
the novice has been the understanding and simulation of
the iterative decoding algorithm, and so we give a thorough
description of the algorithm here. This paper borrows from
some of the most prominent publications in the field [4]-
[9], sometimes adding details that were omitted in those
works. However, the general presentation and some of the
derivations are novel. Our goal is a self-contained, simple
introduction to turbo codes for those already knowledge-
able in the fields of algebraic and trellis codes.

The paper is organized as follows. In the next section we
present the structure of the encoder, which leads to an esti-
mate of its performance. The subsequent section then de-
scribes the iterative algorithm used to decode these codes.
The treatment in each of these sections is meant to be
sufficiently detailed so that one may with reasonable ease

design a computer simulation of the encoder and decoder.

II. THE ENCODER AND ITS PERFORMANCE

Fig. 1 depicts a standard turbo encoder. As seen in the
figure, a turbo encoder is consists of two binary rate 1/2
convolutional encoders separated by an N-bit interleaver
or permuter, together with an optional puncturing mech-
anism. Clearly, without the puncturer, the encoder is rate
1/3, mapping N data bits to 3N code bits. We observe
that the encoders are configured in a manner reminiscent of
classical concatenated codes. However, instead of cascad-
ing the encoders in the usual serial fashion, the encoders
are arranged in a so-called parallel concatenation. Observe
also that the consituent convolutional encoders are of the
recursive systematic variety. Because any non-recursive
(i.e., feedforward) non-catastrophic convolutional encoder
is equivalent to a recursive systematic encoder in that they
possess that same set of code sequences, there was no com-
pelling reason in the past for favoring recursive encoders.
However, as will be argued below, recursive encoders are
necessary to attain the exceptional performance provided
by turbo codes. Without any essential loss of generality,
we assume that the constituent codes are identical. Be-
fore describing further details of the turbo encoder in its
entirety, we shall first discuss its individual components.

A. The Recursive Systematic Encoders

Whereas the generator matrix for a rate 1/2 non-
recursive convolutional code has the form GNR(D) =
[g1(D) g2(D)], the equivalent recursive systematic en-
coder has the generator matrix

Cr(D) = [1 92(D)}

Observe that the code sequence corresponding to the en-
coder input u(D) for the former code is u(D)Gygr(D) =
[W(D)g1(D) w(D)g2(D)], and that the identical code se-
quence is produced in the recursive code by the sequence
(D) = w(D)g1(D), since in this case the code sequence is
w(D)g1 (D)GRr(D) = u(D)Gngr(D). Here, we loosely call
the pair of polynomials u(D)G y g(D) a code sequence, al-
though the actual code sequence is derived from this poly-
nomial pair in the usual way.

Observe that, for the recursive encoder, the code se-
quence will be of finite weight if and only if the input
sequence is divisible by ¢1(D). We have the following im-
mediate corollaries of this fact which we shall use later.



Corollary 1. A weight-one input will produce an infinite
weight output (for such an input is never divisible by a
polynomial ¢; (D)).

Corollary 2. For any non-trivial g; (D), there exists a
family of weight-two inputs of the form DJ(1 4+ D9 1),
7 > 0, which produce finite weight outputs, i.e., which are
divisible by g;(D). When ¢, (D) is a primitive polynomial
of degree m, then ¢ = 2™; more generally, ¢ — 1 is the
length of the pseudorandom sequence generated by g1 (D).

In the context of the code’s trellis, Corollary 1 says that
a weight-one input will create a path that diverges from
the all-zeros path, but never remerges. Corollary 2 says
that there will always exist a trellis path that diverges
and remerges later which corresponds to a weight-two data
sequence.

Ezxample 1. Consider the code with generator matrix

1+D?+ D3+ D*
14+ D+ D4

Ggr(D) =

Thus, g1(D) = 14+ D+ D* and g2(D) = 14+ D?+ D3+ D*
or, in octal form, (g1, g2) = (31, 27). Observe that g;(D)
is primitive so that, for example, u(D) = 1+ D' produces
the finite-length code sequence (1 +DY® 1+D+D?*+ D>+
D® + D7 + D® 4+ D). Of course, any delayed version of
this input, say, D7(1+ D'%), will simply produce a delayed
version of this code sequence. Fig. 2 gives one encoder
realization for this code. We remark that, in addition to
elaborating on Corollary 2, this example serves to demon-
strate the conventions generally used in the literature for
specifying such encoders. [

B. The Permuter

As the name implies, the function of the permuter is
to take each incoming block of IV data bits and rearrange
them in a pseudo-random fashion prior to encoding by the
second encoder. Unlike the classical interleaver (e.g., block
or convolutional interleaver), which rearranges the bits in
some systematic fashion, it is important that the permuter
sort the bits in a manner that lacks any apparent order, al-
though it might be tailored in a certain way for weight-two
and weight-three inputs as explained in Example 2 below.
Also important is that N be selected quite large and we
shall assume N > 1000 hereafter. The importance of these
two requirements will be illuminated below. We point out
also that one pseudo-random permuter will perform about
as well as any other provided N is large.

C. The Puncturer

While for deep space applications low-rate codes are ap-
propriate, in other situations such as satellite communi-
cations, a rate of 1/2 or higher is preferred. The role of
the turbo code puncturer is identical to that of its convolu-
tional code counterpart, to periodically delete selected bits
to reduce coding overhead. For the case of iterative decod-
ing to be discussed below, it is preferrable to delete only
parity bits as indicated in Fig. 1, but there is no guarantee
that this will maximize the minimum codeword distance.
For example, to achieve a rate of 1/2, one might delete all

even parity bits from the top encoder and all odd parity
bits from the bottom one.

D. The Turbo Encoder and Its Performance

As will be elaborated upon in the next section, a
maximum-likehood (ML) sequence decoder would be far
too complex for a turbo code due to the presence of the
permuter. However, the suboptimum iterative decoding al-
gorithm to be described there offers near-ML performance.
Hence, we shall now estimate the performance of an ML
decoder (analysis of the iterative decoder is much more
difficult).

Armed with the above descriptions of the components of
the turbo encoder of Fig. 1, it is easy to conclude that it
is linear since its components are linear. The constituent
codes are certainly linear, and the permuter is linear since
it may be modeled by a permutation matrix. Further,
the puncturer does not affect linearity since all codewords
share the same puncture locations. As usual, the impor-
tance of linearity is that, in considering the performance
of a code, one may choose the all-zeros sequence as a ref-
erence. Thus, hereafter we shall assume that the all-zeros
codeword was transmitted.

Now consider the all-zeros codeword (the 0" codeword)
and the k" codeword, for some k € {1,2,...,2Y —1}. The
ML decoder will choose the k" codeword over the 0/* code-
word with probability Q («/2dk7‘Eb/N0) where r is the

code rate and dj, is the weight of the k" codeword. The
bit error rate for this two-codeword situation would then
be

Py(k | 0)

wy, (bit errors/cw error) x

1
N (cw/ data bits) x

Q (\/QTdkEb/No) (cw errors/cw)

2rdi E
= %Q (1 /TTkOb> (bit errors/data bit)

where wy, is the weight of the k** data word. Now including
all of the codewords and invoking the usual union bounding
argument, we may write

P, = Py(choose any k € {1,2,....28 —1} | 0)

2N 1

> Rk |0)

k=1
N
2 ! W Q 27"dkEb
N No
k=1

Note that every non-zero codeword is included in the above
summation. Let us now reorganize the summation as
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where the first sum is over the weight-w inputs, the second
sum is over the (]u\f) different weight-w inputs, and d,, is
the weight of the v** codeword produced by a weight-w
input.

Consider now the first few terms in the outer summation
of (1).

w=1: From Corollary 1 and associated discussion
above, weight-one inputs will produce only large weight
codewords at both constituent encoder outputs since the
trellis paths created never remerge with the all-zeros path.
Thus, each dy, is significantly greater than the minimum
codeword weight so that the w = 1 terms in (1) will be

negligible.

w=2: Of the (g) weight-two encoder inputs, only a
fraction will be divisible by g¢1(D) (i.e., yield remergent
paths) and, of these, only certain ones will yield the small-
est weight, dggin, at a constituent encoder output (here,
CC denotes “constituent code”). Further, with the per-
muter present if an input u(D) of weight-two yields a
weight - d2 ‘min codeword at the first encoder’s output, it is
unlikely that the permuted input, u (D), seen by the sec-
ond encoder will also correspond to a weight- Cl2 min code-
word (much less, be divisible by ¢1(D)). We can be sure,
however, that there will be some minimum-weight turbo
codeword produced by a w = 2 input, and that this mini-
mum weight can be bounded as

dggln 2 2d2 min — 2 s

with equality when both of the constituent encoders pro-
duce weight- d2 ‘min codewords (minus 2 for the bottom en-
coder). The exact value of Cl2 min is permuter dependent.
We will denote the number of weight-two inputs which
produce weight- d2 ‘min turbo codewords by ng so that, for
w = 2, the inner sum in (1) may be approximated as

(g) 2 27‘d2va -~ 2712
W o

=1

<

w = 3: Following an argument similar to the w = 2 case,
we can approximate the inner sum in (1) for w = 3 as

N
(%) i 27“d3va _ %Q 27‘d§ngb 3)
N V N - N Ny ’

v=1

where ng and d;gin are obviously defined. While ng is
clearly dependent on the interleaver, we can make some
comments on its size relative to ng for a “randomly gener-
ated” interleaver. Although there are (IV — 2)/3 times as
many w = 3 terms in the inner summation of (1) as there
are w = 2 terms, we can expect the number of weight-three
terms divisible by ¢1(D) to be of the order of the number
of weight-two terms divisible by ¢1(D). Thus, most of the
(g) terms in (1) can be removed from consideration for
this reason. Moreover, given a weight-three encoder input

u(D) divisible by g1(D) (e.g., g1(D) itself in the above ex-
ample), it becomes very unlikely that the permuted input
u/(D) seen by the second encoder will also be divisible by
g1(D). For example, suppose u(D) = g1 (D) = 14+ D+ D*.
Then the permuter output will be a multiple of g; (D) if
the three input 1’s become the 5%, (j 4 1), and (j +4)"
bits out of the permuter, for some j. If we imagine that the
permuter acts in a purely random fashion so that the prob-
ability that one of the 1’s lands a given position is 1/N, the
permuter output will be D’ g, (D) = D’ (1 +D+ D4) with
probabilility 3!/N3.! For comparison, for w = 2 inputs,
a given permuter output pattern occurs with probability
2!/N2. Thus, we would expect the number of weight-three
inputs, ng3, resulting in remergent paths in both encoders
to be much less than ny,

ng << nag,

with the result being that the inner sum in (1) for w =3
is negligible relative to that for w = 2.2

w > 4: Again we can approximate the inner sum in (1)
for w = 4 in the same manner as in (2) and (3). Still
we would like to make some comments on its size for the
“random” interleaver. A weight-four input might appear
to the first encoder as a weight-three input concatenated
some time later with a weight-one input, leading to a non-
remergent path in the trellis and, hence, a negligible term
in the inner sum in (1). It might also appear as a concate-
nation of two weight-two inputs, in which case the turbo
codeword weight is at least 2d2T’ gin, again leading to a neg-
ligible term in (1). Finally, if it happens to be some other
pattern divisible by ¢1 (D) at the first encoder, with prob-
ability on the order of 1/N? it will be simultaneously di-
visible by g1(D) at the second encoder.® Thus, we may
expect ny << ng so that the w > 4 terms are negligible in
(1). The cases for w > 4 are argued similarly.

To summarize, the bound in (1) can be approximated as

2rdTC . F
P, ~ max Wiy 2 "wmin—b (4)
w>2 N Nop

TC . . .
where n,, and d, ‘min are€ functions of the particular in-

terleaver employed From our discussion above, we might
expect that the w = 2 term dominates for a randomly gen-
erated interleaver, although it is easy to find interleavers
with no = 0 as seen in the example to follow. In any case,

IThis is not the only weight-three pattern divisible by g1 (D) —
g%(D) = 14 D? 4 D® is another one, but this too has probability
31/N3 of occurring.

2 Because our argument assumes a. “purely random” permuter, the
inequality n3 << np has to be interpreted probabilistically. Thus, it
is more accurate to write F{n3} << E{n2} where the expectation
is over all interleavers. Alternatively, for the average interleaver, we
would expect n3 << ng; thus if no = 5, say, we would expect ng = 0.

3The value of 1/N2 derives from that fact that ideally a particular
divisible output pattern occurs with probability 4!/N 4 but there will
be approximately N shifted versions of that pattern, each divisible
by g1(D).



we observe that P, decreases with NV, so that the error rate
can be reduced simply by increasing the interleaver length.
This effect is called interleaver gain (or permuter gain) and
demonstrates the necessity of large permuters. Finally, we
note that recursive encoders are crucial elements of a turbo
code since, for non-recursive encoders, division by g¢;(D)
(non-remergent trellis paths) would not be an issue and
(4) would not hold (although (1) still would).

Ezample 2. We consider the performance of a rate 1/2,
(31, 33) turbo code for two different interleavers of size
N = 1000. We start first with an interleaver that was
randomly generated . We found for this particular inter-
leaver, no = 0 and ngz = 1, with d3 min = = 9, so that the
w = 3 term dominates in (4). Interestlngly7 the inter-
leaver input corresponding to this dominant error event
was D1%(1 + D% 4+ D'%) which produces the interleaver
output D (1 + D5 4 D88) where of course both poly-
nomials are divisible by ¢;(D) = 1 + D + D*. Figure 3
gives the simulated performance of of this code for 15 iter-
ations of the iterative decoding algorithm detailed in the
next section. Also included in Fig. 3 is the estimate of (4)
for the same interleaver which is observed to be very close
to the simulated values. The interleaver was then modified
by hand to improve the weight spectrum of the code. It
was a simple matter to attain no = 1 with d2 min = 12 and
ng = 4 with d3 min = 15 for this second interleaver so that
the w = 2 term now dominates in (4). The simulated and
estimated performance curves for this second interleaver
are also included in Fig. 3. O

In addition to illustrating the use of the estimate (4),
this example helps explain the unusual shape of the error
rate curve: it may be interpreted as the usual Q-function
shape for a signaling scheme with a modest dy,;,, “pushed
down” by the interleaver gain w*n,-/N, where w* is the
maximizing value of w in (4).

III. THE DECODER

Consider first an ML decoder for a rate 1/2 convolutional
code (recursive or not), and assume a data word of length
N, N > 1000 say. Ignoring the structure of the code, a
naive ML decoder would have to compare (correlate) 2V
code sequences to the noisy received sequence, choosing
in favor of the codeword with the best correlation met-
ric. Clearly, the complexity of such an algorithm is exorbi-
tant. Fortunately, as we know, such a brute force approach
is simplified greatly by Viterbi’s algorithm which permits
a systematic elimination of candidate code sequences (in
the first step, 2¥ ! are eliminated, then another 2V 2 are
eliminated on the second step, and so on). Unfortunately,
we have no such luck with turbo codes, for the presence
of the permuter immensely complicates the structure of a
turbo code trellis, making these codes look more like block
codes.

Just prior to the discovery of turbo codes, there was
much interest in the coding community in suboptimal de-
coding strategies for concatenated codes, involving mul-

tiple (usually two) decoders operating cooperatively and
iteratively. Most of the focus was on a type of Viterbi de-
coder which provides soft-output (or reliability) informa-
tion to a companion soft-output Viterbi decoder for use in
a subsequent decoding [10]. Also receiving some attention
was the symbol-by-symbol maximum a posteriori (MAP)
algorithm of Bahl, et al [11], published over 20 years ago.
It was this latter algorithm, often called the BCJR algo-
rithm, that Berrou, et al [1], utilized in the iterative de-
coding of turbo codes. We will discuss in this section the
BCJR algorithm employed by each constituent decoder,
but we refer the reader to [11] for the derivations of some
of the results.

We first discuss a modified version of the BCJR algo-
rithm for performing symbol-by-symbol MAP decoding.
We then show how this algorithm is incorporated into an
iterative decoder employing two BCJR-MAP decoders. We
shall require the following definitions:

- Fl is a notation for encoder 1

- K2 is a notation for encoder 2

- D1 is a notation for decoder 1

- D2 is a notation for decoder 2

- m is the constituent encoder memory

- S is the set of all 2™ constituent encoder states

- x° = (25,25,...,2%) = (w1, ug,...,uy) is the encoder

input word

- xP = (af, 25, ...,2%) is the parity word generated by
a constituent encoder

- yr = (y5,y%) is a noisy (AWGN) version of (z§,2%)

- Y2 = (YasYasts -1 Up)

-y =y¥ = (y1,92, ...,yn) is the noisy received code-
word

A. The Modified BCJR Algorithm

In the symbol-by-symbol MAP decoder, the decoder de-
cides up, = +1 if P(up, = +1]y) > P(ur, = —1|y), and it
decides uy = —1 otherwise. More succinctly, the decision
iy is given by

Uy = sign [L(uz)]

where L(uy) is the log a posteriori probability (LAPP)
ratio defined as

L(uz) 2 log <M) .

Pup =—1]y)

Incorporating the code’s trellis, this may be written as

;p(sk—l =4 s, =3,y)/p(y)

§P(8k 1=5"8,=35Y)/p(y)

L(uy) = log (5)



where s;, € S is the state of the encoder at time k, ST is
the set of ordered pairs (s',s) corresponding to all state
transitions (sx_1 = §') — (s = §) caused by data input
ur, = +1, and S~ is similarly defined for uz = —1.

Observe we may cancel p(y) in (5) which means we
require only an algorithm for computing p(s’,s,y) =
p(sr 1 =28",8, = 8,¥). The BCJR algorithm [11] for doing
this is

p(s',5,y) = ar—1(s') - (s, ) - Br(s) (6)
where ay,(s) £ p(sg = s,y¥) is computed recursively as
Z ar 1(s") k(s 5) (7)
Jrprs
with initial conditions
ap(0) =1 and ap(s#0)=0. (8)

(These conditions state that the encoder is expected to
start in state 0.) The probability vx(s’, s) in (7) is defined
as

Ye(s',8) £ p(sk = 5,Ur | s 1 =15") (9)
and will be discussed further below. The probabilities
Br(s) £ p(yX.1 | 8= = s) in (6) are computed in a “back-
ward” recursion as

Br-1(s) = Brl(s)mm(s' ) (10)

sesS

with boundary conditions

By(0) =1 and By(s #0) =0 (1)

(The encoder is expected to end in state 0 after N input
bits, implying that the last m input bits, called termination
bits, are so selected.)

Unfortunately, cancelling the divisor p(y) in (5) leads
to a numerically unstable algorithm. We can include di-
vision by p(y)/p(yx) in the BCJR algorithm* by defining
modified probabilities

ar(s) = ax(s)/p(y¥)
and ~
Br(s) = Br(s)/p(yres | ¥1)

Dividing (6) by p(y)/p(yx) = p(y} "p(yi, | %), we
obtain

p(s',s | ¥)p(us) = r-1(s") - e(s',5) - Br(s) . (12)

Note since p(yf) = >, 5 @x(s), the values dy(s) may be
computed from {ay(s) : s € S} via

s)/ Z ax(s) . (13)

seES

4Unfortunately, dividing by simply p(y) to obtain p(s',s | y) also
leads to an unstable algorithm. Obtaining p(s’,s | y)p(yx) instead
of the APP p(s’,s | y) presents no problem since an APP ratio is
computed so that the unwanted factor p(yg) cancels; see equation
(16) below.

But since we would like to avoid storing both {az(s)} and
{@x(s)}, we can use (7) in (13) to obtain a recursion in-
volving only {ésx(s)},

- _ 2y ok a($)m(s )
ar(s) = ; -
Zs Zs’ Ok 1(8 )’)/k(S 78)
— Zs’ Qg 1(8/)779(8/7 S) (14)
Zs ZS’ dkfl(s/)’)/k(sx 8) ’
where the second equality follows by dividing the numera-

tor and the denominator by p(yr1).

The recursion for §%(s) can be obtained by noticing that

p(yn.y | ¥9)
pY | yE Y = pyky . BYEer 13U

p(yy ™)
= S a2 D

s s’ p(yl )

= Z Z d]gfl(sl)’)/k (3/7 5) : p(Yk—H | y]f)

so that dividing (10) by this equation yields
> Bu(8)7e(s',5)
Zs Zs’ dkfl(sl)’yk(slﬂg)

In summary, the modified BCJR-MAP algorithm in-
volves computing the LAPP ratio L(ug) by combining (5)
and (12) to obtain

qu(sl) =

(15)

S 1(8) - (s, 5) - Br(s)
S dg-1(s') - Ye(s',8) - Bu(s)

(16)

where the a’s and B’s are computed recursively via (14)
and (15), respectively. Clearly the {az(s)} and {Gk(s)}
share the same boundary conditions as their counterparts
as given in (8) and (11). Computation of the probabilities
v (8', 8) will be discussed shortly.

On the topic of stability, we should point out also that
the algorithm given here works in software, but a hard-
ware implementation would employ the “log-MAP” algo-
rithm [12], [14]. In fact, most software implementations
these days use the log-MAP, although they can be slower
than the algorithm presented here if not done carefully.
The algorithm presented here is close to the earlier turbo
decoding algorithms [1], [13], [4].

B. Iterative MAP Decoding

From Bayes’ rule, the LAPP ratio for an arbitrary MAP
decoder can be written as

L(ug) = log <w> +log <M)

P(y | uxr =-1) P(ug, = —1)

with the second term representing a priori information.
Since P(ur = +1) = P(ur = —1) typically, the a pri-
ori term is usually zero for conventional decoders. How-
ever, for iterative decoders, D1 receives extrinsic or soft



information for each uz from D2 which serves as a pri-
ort information. Similarly, D2 receives extrinsic infor-
mation from D1 and the decoding iteration proceeds as
D1—-D2—D1—D2—..., with the previous decoder passing
soft information along to the next decoder at each half-
iteration except for the first. The idea behind extrinsic
information is that D2 provides soft information to D1 for
each uy, using only information not available to D1 (i.e.,
E2 parity); D1 does likewise for D2.

An iterative decoder using component BCJR-MAP de-
coders is shown in Fig. 4. Observe how permuters and
de-permuters are involved in arranging systematic, parity,
and extrinsic information in the proper sequence for each
decoder.

We now show how extrinsic information is extracted
from the modified-BCJR version of the LAPP ratio embod-
ied in (16). We first observe that v, (s’, s) may be written
as (cf. equation (9))

P(s | s)p(yx | s',5)
= P(ur)p(yr | ur)

Tk(s', 8)

where the event uz corresponds to the event s’ — s. Defin-

ing Lé(ur) 2 log <%) 7

observe that we may write
_ [ exp[=L%(ux)/?] e
Puy) = <1 —}-exp[—Le(uk)]) - explug L (ur) /2]
= ApexplupL®(u)/2 (17)

where the first equality follows since it equals

V/P_JP
<#> VP./P = P. whenu, =+1 and

1+P /P,

<—‘VP/P+> VP JP. = P_whenuy=—1.

1+P_/P.

where we have defined P, £ P(uy = +1) and P. £

P(uy, = —1) for convenience. As for p(yy | uz), we may
write (recall y, = (y5,95) and zp = (23, 2}) = (up,2%))
Wi —w)® (g —2p)°
p(yk | Uk) & exp |:_ 20_2 - 20_2

yp 2l +yf P4 ah
- P 202

[Uky;i + xzyﬂ
P o2

Sa + p.’IJp
By exp [—yk kagyk &

so that

] P, P
Y (8', 8) o< Ay By, explurL®(ur)/2] exp [M} )

T )

Now since 7x(s’,s) appears in the numerator (where
ug, = +1) and denominator (where u; = —1) of (16), the
factor ApBj will cancel as it is independent of uz. Also,
since we assume transmission of the symbols +1 over the

channel, %72 = 0—12 so that 02 = Ny/2F, where E, = rF,

is the energy per channel bit. From (18), we then have
1 1 e s 1 PP
'Yk(s 75) ~ €exXp EUk (L (uk) + Lcyk) + §Lcykxk

= exp |G (£5() + L) 55(6'9) (19

A
where L. = %EOQ and where

1
Vi (s',8) £ exp [#&Zl’i} .

Combining (19) with (16) we obtain

;dk 1(8") - 75 (8', 8) - Br(s) - Cy

L(uz) = log SZ%A(S’) 75 (8',8) - B(s) - Ci
= Leyy + L (ur) )
52;5% 1(5) - 75 (s, 8) - Bi(s)
o szqu(s') $i(s',8) - Bi(s)

where C, £ exp [%uk (L= (ug) + Lcy;’i)] . The second equal-
ity follows since Ci(ur = +1) and Ci(ur = —1) can be
factored out of the summations in the numerator and de-
nominator, respectively. The first term in (20) is some-
times called the channel value, the second term represents
any a priori information about uy provided by a previous
decoder, and the third term represents extrinsic informa-
tion that can be passed on to a subsequent decoder. Thus,
for example, on any given iteration, D1 computes

Ly(ur) = Leyy, + Ly (ur) 4+ Lio(ur)

where L§; (uz) is extrinsic information passed from D2 to
D1, and L§,(uz) is the third term in (20) which is to be
used as extrinsic information from D1 to D2.

C. Pseudo-Code for the Iterative Decoder

We do not give pseudo-code for the encoder here since
this is much more straightforward. However, it must be
emphasized that at least E1 must be terminated correctly
to avoid serious degradation. That is, the last m bits of
the N-bit information word to be encoded must force E1
to the zero state by the N bit.

The pseudo-code given below for iterative decoding of
a turbo code follows directly from the development above.
Implicit is the fact that each decoder must have full knowl-
edge of the trellis of the constituent encoders. For example,
each decoder must have a table (array) containing the in-
put bits and parity bits for all possible state transitions
s’ — s. Also required are permutation and de-permutation



functions (arrays) since D1 and D2 will be sharing relia-
bility information about each uz, but D2’s information is
pemuted relative to D1. We denote these arrays by P[]
and Pinv[-], respectively. For example, the permuted word
u’ is obtained from the original word u via the pseudo-code
statement: for k =1: N, uj, = up[x], end. We next point
out that due to the presence of L. in L(uy), knowledge of
the noise variance Ny/2 by each MAP decoder is neces-
sary. Finally, we mention that a simple way to simulate
puncturing is, in the computation of «.(s',s), to set to
zero the received parity samples y;p or yip , corresponding
to the punctured parity bits, xk orx p. Thus, puncturing
need not be performed at the encoder

N(l)(s)—lfors—O
=0fors#0

~1(;)(s):1fors:0
=0for s#0

L5 () =0for k=1,2,.. N
D2:
&P (s)=1fors=0
=0fors#0
- 5(2)( ) = 0753)(8) for all s (set after computation of
{04(2)(8)} in the first iteration)®

- L§y(ug) is to be determined from D1 after the first
half-iteration and so need not be initialized

===== The n'" interation =====
D1:
fork=1:N

- get yi = (y;,y}gp) where y;p is a noisy version of E1l
parity

- compute x(s',s) from (19) for all allowable state
transitions s’ — s (ug in (19) is set to the value of
the encoder input which caused the transition s’ — s;
L#(uz) is in this case L5 (Upiny[r)); the de-permuted
extrinsic informaton from the previous D2 iteration)

5Note encoder 2 cannot be simply terminated due to the presence
of the interleaver. The strategy implied here leads to a negligible
loss in performance. Other termination strategies can be found in
the literature (e.g., [15]).

- compute a( )( ) for all s using (14)

end
fork=N:—-1:2

- compute ( ) 1(s) for all s using (15)

end
fork=1: N

- compute L§,(uy) using

zaé:h( (s, s) -

50 (s)

L{s(ug) = log e

SZO% 1(87) - 7e(s!

end
D2:
fork=1: N

- get Y = (yj:[k]vyzp)

- compute x(s',s) from (19) for all allowable state
transitions s’ — s (uy in (19) is set to the value of
the encoder input which caused the transition s’ — s;
Lf(ux) is Liz(uppr)), the permuted extrinsic infor-
maton from the previous D1 iteration; y; is the per-

muted systematic value, yfp[k])
- compute 54](62)(8) for all s using (14)

end
fork=N:—-1:2

- compute ( 2) 1(s) for all s using (15)

end
fork=1: N

- compute L§; (uz) using

2d53>1< (s s) -

,8)- B (s)

37 (s)

L5, (ug) = log ")

= A i) )

end
===== After the last iteration =—====
fork=1:N

- compute

Li(ux) = Loy, 4+ Ly (Upinor)) + Lo (ur)

- if Ly (ug) > 0

decide uz, = +1



else
decide ug, = —1

end
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Fig. 1. Diagram of a standard turbo encoder with two
identical recursive systematic encoders (RSC’s).
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Fig. 2. Recursive systematic encoder for code generators
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Fig. 3. Simulated performance of the rate 1/2 (31, 33)
turbo code for two different interleavers (N = 1000)
together with the asymptotic performance of each
predicted by (4).
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Fig. 4. Diagram of iterative (turbo) decoder which uses
two MAP decoders operating cooperatively. L, is “soft”
or extrinsic information from D1 to D2, and L§; is
defined similarly. The final decisions may come from
either D1 or D2.



