
Coding

Errors in a digital communication system can be reduced by using

• Automatic repeat request (ARQ): When a receiver circuit detects errors
in a block of data, it requests that the block be retransmitted. This requires
a duplex (two-way) channel.

• Forward error correction (FEC): The transmitted data are encoded so
that the receiver can correct as well as detect errors.

These methods represent channel coding techniques, in contrast to source

coding which attempts to reduce redundancy in a signal representation.

From a theoretical viewpoint, Shannon’s channel capacity theorem states that a
finite value for S/N limits only the rate of transmission of information. The
probability of error can approach zero, however, as long as the information rate
is less than the channel capacity. The topic of coding deals with methods of
trying to get channels to operate at their capacity.

Coding provides improved performance due to:

• Redundancy: Extra bits are added by the coder to accentuate the
uniqueness of each message

• Noise averaging: The code is designed so that the receiver can average
out noise over long timespans T0, where T0 becomes large.

Two broad categories of codes are discussed here:

• Block codes: k input symbols are mapped directly to n output symbols.
Since n > k, the code can be selected to provide redundancy, such as
parity bits, which are used by the decoder to provide some error detection
or correction. These codes are called (n, k)-codes, with a code rate
R = k/n.

• Tree codes: A tree code is produced by a coder that has memory. For
example, the convolutional coder takes k binary symbols at its input and

1



produces n binary symbols at its output, but here the n output symbols are

affected by v + k input symbols. The code rate is R = k/n.

1 Block codes

The Hamming distance d between two codewords is the number of positions

by which they differ. For example, the codewords 110101 and 111001 have a

distance of d = 2.

If valid codewords are always at least a distance d = 2 apart, then it is always

possible to detect a single error. If codewords are a distance of d = 3 apart,

then a single error can be detected and corrected (or two errors detected). In

general, some errors can be detected and corrected if d ≥ s + t + 1, where s is

the number of errors that can be detected, and t the number that can be

corrected (s ≥ t). Thus t or fewer errors can be detected and corrected if

d ≥ 2t + 1.

In block coding, codewords are expressed in the form

i1i2i3 · · · ik p1 p2 · · · pr ,

where k is the number of information bits, r is the number of parity check bits,

and n is the total word length in the (n, k) block code, where n = k + r . There

are M = 2k valid codewords. For the parity bits to provide error detection and

correction, they must be functionally related to the information bits. This

relationship is expressed as follows:

p1 = z11i1 ⊕ z12i2 ⊕ · · · ⊕ z1k ik

p2 = z21i1 ⊕ z22i2 ⊕ · · · ⊕ z2k ik

...

pr = zr1i1 ⊕ zr2i2 ⊕ · · · ⊕ zrk ik .

2



Note that these equations are all expressed in modulo-2 arithmetic, where
multiplication is defined as

0 · 0 = 0, 1 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1,

and addition as

0 ⊕ 0 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, 1 ⊕ 1 = 0.

Defining

Z =

















z11 z12 · · · z1k

z21 z22 · · · z2k

...
...

. . .
...

zr1 zr2 · · · zrk

















,

the encoded vector

c = [i1, i2, · · · , ik, p1, p2, · · · , pr ]T

can therefore be obtained from the information word

m = [i1, i2, · · · , ik]T

using the linear relation c = GT m, where G is the generator matrix

G =
(

I ZT
)

The conditions on the parity check bits can equivalently be expressed as

follows:

0 = z11i1 ⊕ z12i2 ⊕ · · · ⊕ z1k ik ⊕ p1

0 = z21i1 ⊕ z22i2 ⊕ · · · ⊕ z2k ik ⊕ p2

...

0 = zr1i1 ⊕ zr2i2 ⊕ · · · ⊕ zrk ik ⊕ pr .

3



A r × n parity check matrix

H =

















z11 z12 · · · z1k 1 0 · · · 0

z21 z22 · · · z2k 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

zr1 zr2 · · · zrk 0 0 · · · 1

















=
(

Z I
)

.

can therefore be defined, and for a codeword c to be valid it must be true that

Hc = 0.

The function of the receiver is to try to recover the original information word
m from a received codeword c̃. The tilde denotes that the received vector may
have some errors, caused by noise in the channel and other impairments. The
first role of the receiver is therefore to determine if there are any errors in c̃, and
if so to correct them to produce c. This is done by evaluating the syndrome

s = Hc̃.

If s = 0, no errors are detected. However, if s 6= 0 then an error has occurred.

To find out how to correct a single error, suppose the received codeword c̃ has
an error in the j th position. Then

c̃ = c ⊕ e,

where e is an error vector e = [0, · · · , 1, · · · , 0]T , with the 1 in the j th
position. In this case the syndrome is

s = Hc̃ = H(c ⊕ e) = He.

This is exactly the j th column of the H matrix. The bit in error can therefore be
determined by comparing the syndrome to the columns of H. Once the location
of the incorrect bit is determined, the received codeword can be corrected.

Finding good long codes for error correction is not trivial. A Hamming code
is a block code that has a Hamming distance of d = 3, so a single error can be

4



detected and corrected. For this code, the H matrix is determined by choosing
the Z matrix such that the columns of H contain all the possible r -bit binary
words except for the all-zero vector. However, only certain (n, k) codes are
allowable, namely those where

(n, k) = (2m − 1, 2m − 1 − m)

with m an integer and m ≥ 3. Thus some allowable codes are (7, 4), (15, 11),
(63, 57), and (127, 120). As m becomes large the code rate tends towards 1,
and the information throughput efficiency of the code becomes high.

Example:
Consider the (7, 4) code with parity check matrix

H =









1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1









This represents a Hamming code, since the columns of H are the binary-coded
decimal numbers 1 through 7.

The generator matrix for this code can be shown to be

G =















1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1















.

For m = [1, 0, 1, 1]T the transmitted codeword is therefore

c = GT m = [1, 0, 1, 1, 0, 1, 0]T .

Suppose now that due to noise the received codeword is
c̃ = [1, 0, 1, 0, 0, 1, 0]T . The syndrome is

s = Hc̃ = [1, 1, 1]T

5



which is the 4th column of H. We therefore conclude that the 4th element of c̃
is in error, and that the received codeword should in fact be
[1, 0, 1, 1, 0, 1, 0]T .

2 Convolutional codes

In a convolutional encoder, k bits (one input frame) are shifted in and
concurrently n bits (one output frame) are shifted out during each encoding
cycle.

Constraint length = K input frames

n−bit frame

coded output datan−bits

shift register

Logic

k−bit frame

uncoded input data

shift register (kK bits)

Convolutional encoder

Every k-bit input frame therefore results in an n-bit output frame, with
redundancy provided by making n > k. Also, memory is provided in the
coder, since the output frame depends on the previous K input frames, where
K > 1. The code rate is R = k/n. In the example above, k = 3, n = 4,
K = 5, and R = 3/4.

Depending on the particular convolutional code, data from the kK stages of the
shift register are added (modulo-2) and used to set the bits in the output

6



register.

A rate 1/3 convolutional encoder is shown below:

Input

Output

PSfrag replacements

v1 v2 v3

S1 S2 S2

S3

Here k = 1, K = 3, and n = 3. A commutator with 3 inputs performs the

function of the shift register — the convolutional code is generated by

inputting a bit of data and then rotating the commutator to produce n = 3

output bits. The encoder shown implements the code

v1 = S1 ⊕ S2 ⊕ S3

v2 = S1

v3 = S1 ⊕ S2.

Thus the input sequence 101001 results in the output sequence

111101011101100111.

Convolutional codes can be decoded by tree-searching techniques. A portion

of the code tree for the encoder above is

7



(110)

0000
0

(000)
1

(111)
0001

0010
0

(101)
1

(010)
0011

0100
0

(100)
1

(011)
0101

0110
0

(001)
1

(110)
0111

1000
0

(000)
1

(111)
1001

1010
0

(101)
1

(010)
1011

1100
0

(100)
1

(011)
1101

1110
0

(001)
1

(110)
1111

0
(101)

1
(010)

0

1

0

1

0
(000)

(111)
1

0

1

0
(000)

(111)
1

0
(000)

1
(111)

(101)

(010)

(100)

(011)

(001)

If the input to the encoder was 1010, the output would be 111101011101.

Decoding this sequence involves following the dashed line in the figure — at

each fork in the tree we follow the path closest in Hamming distance to the

input sequence. Thus it is evident that the input sequence 110101011111 will

8



be decoded as 1010, indicating an error in the third and eleventh positions of

the input sequence.

For N information symbols the tree code requires 2N branches, which

becomes impractical in terms of storage requirements when N is large. The

most popular technique for decoding uses the Viterbi algorithm.

9


